Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential
Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 608-615 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By taking advantage of Wang’s results on the scalar product of four eigenfunctions of the 1D harmonic oscillator, we explicitly calculate the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by a Gaussian potential, showing that it can be written as a ratio of Gamma functions.
Keywords: Gaussian potential, Birman-Schwinger operator, trace class operator, harmonic oscillator.
@article{NANO_2019_10_6_a0,
     author = {S. Fassari and F. Rinaldi},
     title = {Exact calculation of the trace of the {Birman{\textendash}Schwinger} operator of the one-dimensional harmonic oscillator perturbed by an attractive {Gaussian} potential},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {608--615},
     year = {2019},
     volume = {10},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/}
}
TY  - JOUR
AU  - S. Fassari
AU  - F. Rinaldi
TI  - Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2019
SP  - 608
EP  - 615
VL  - 10
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/
LA  - en
ID  - NANO_2019_10_6_a0
ER  - 
%0 Journal Article
%A S. Fassari
%A F. Rinaldi
%T Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential
%J Nanosistemy: fizika, himiâ, matematika
%D 2019
%P 608-615
%V 10
%N 6
%U http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/
%G en
%F NANO_2019_10_6_a0
S. Fassari; F. Rinaldi. Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential. Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 608-615. http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/