Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential
Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 608-615
By taking advantage of Wang’s results on the scalar product of four eigenfunctions of the 1D harmonic oscillator, we explicitly calculate the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by a Gaussian potential, showing that it can be written as a ratio of Gamma functions.
Keywords:
Gaussian potential, Birman-Schwinger operator, trace class operator, harmonic oscillator.
@article{NANO_2019_10_6_a0,
author = {S. Fassari and F. Rinaldi},
title = {Exact calculation of the trace of the {Birman{\textendash}Schwinger} operator of the one-dimensional harmonic oscillator perturbed by an attractive {Gaussian} potential},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {608--615},
year = {2019},
volume = {10},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/}
}
TY - JOUR AU - S. Fassari AU - F. Rinaldi TI - Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential JO - Nanosistemy: fizika, himiâ, matematika PY - 2019 SP - 608 EP - 615 VL - 10 IS - 6 UR - http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/ LA - en ID - NANO_2019_10_6_a0 ER -
%0 Journal Article %A S. Fassari %A F. Rinaldi %T Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential %J Nanosistemy: fizika, himiâ, matematika %D 2019 %P 608-615 %V 10 %N 6 %U http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/ %G en %F NANO_2019_10_6_a0
S. Fassari; F. Rinaldi. Exact calculation of the trace of the Birman–Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential. Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 608-615. http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a0/