Inverse dynamic problem for the wave equation with periodic boundary conditions
Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 2, pp. 115-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse dynamic problem for the wave equation with a potential on an interval $(0 , 2\pi)$ with periodic boundary conditions. We use a boundary triplet to set up the initial-boundary value problem. As inverse data we use a response operator (dynamic Dirichlet-to-Neumann map). Using the auxiliary problem on the whole line, we derive equations of the inverse problem. We also establish the relationships between dynamic and spectral inverse data.
Keywords: inverse problem, Boundary Control method, Schrödinger operator.
@article{NANO_2019_10_2_a0,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Inverse dynamic problem for the wave equation with periodic boundary conditions},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2019_10_2_a0/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Inverse dynamic problem for the wave equation with periodic boundary conditions
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2019
SP  - 115
EP  - 123
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2019_10_2_a0/
LA  - en
ID  - NANO_2019_10_2_a0
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Inverse dynamic problem for the wave equation with periodic boundary conditions
%J Nanosistemy: fizika, himiâ, matematika
%D 2019
%P 115-123
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2019_10_2_a0/
%G en
%F NANO_2019_10_2_a0
A. S. Mikhailov; V. S. Mikhailov. Inverse dynamic problem for the wave equation with periodic boundary conditions. Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/NANO_2019_10_2_a0/