Vibron transport in macromolecular chains with squeezed phonons
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 5, pp. 597-602
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate physical properties of a single vibronic intramolecular excitation propagating through a macromolecule, whose vibrational state can be described as a squeezed vacuum state. For a theoretical description of such a process, the partial dressing method of the vibronic excitation due to its interaction with phonons is used. We study the influence of the model parameters and strength of squeezing on the vibron dressing. It is demonstrated that for certain critical values of the model parameters a polaron crossover can occur, at which there is a sharp change in the migration nature of a vibron from the practically free to the heavy quasiparticle dressed by a phonon cloud. Increasing the strength of phonon squeezing is shown to increase the critical values of the model parameters, so that for high phonon squeezing the polaron crossover takes place in the very strong-coupling and adiabatic regime.
Keywords:
energy transport, squeezed state, vibron, small polaron.
@article{NANO_2018_9_5_a2,
author = {D. \v{C}evizovi\'c and A. V. Chizhov and S. Galovi\'c},
title = {Vibron transport in macromolecular chains with squeezed phonons},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {597--602},
year = {2018},
volume = {9},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a2/}
}
TY - JOUR AU - D. Čevizović AU - A. V. Chizhov AU - S. Galović TI - Vibron transport in macromolecular chains with squeezed phonons JO - Nanosistemy: fizika, himiâ, matematika PY - 2018 SP - 597 EP - 602 VL - 9 IS - 5 UR - http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a2/ LA - en ID - NANO_2018_9_5_a2 ER -
D. Čevizović; A. V. Chizhov; S. Galović. Vibron transport in macromolecular chains with squeezed phonons. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 5, pp. 597-602. http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a2/