New extended Jacobi elliptic function expansion scheme for wave-wave interaction in ionic media
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 5, pp. 581-585
Voir la notice de l'article provenant de la source Math-Net.Ru
New Jacobi Elliptic functions expansion scheme, more general than the hyperbolic tangent function method, is derived to construct the exact wave solutions in terms of Jacobi Elliptic functions. The coupled 1D nonlinear Schrödinger-Zakharov (CNLSZ) system is taken as the model equation for wave-wave interaction in ionic media. It is shown that more new solutions can be obtained at their limit condition.
Keywords:
the coupled 1D nonlinear Schrödinger-Zakharov (CNLSZ) system, Jacobi elliptic function expansion scheme, hyperbolic tangent function expansion.
@article{NANO_2018_9_5_a0,
author = {Ram Dayal Pankaj and Bhawani Singh and Arun Kumar},
title = {New extended {Jacobi} elliptic function expansion scheme for wave-wave interaction in ionic media},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {581--585},
publisher = {mathdoc},
volume = {9},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a0/}
}
TY - JOUR AU - Ram Dayal Pankaj AU - Bhawani Singh AU - Arun Kumar TI - New extended Jacobi elliptic function expansion scheme for wave-wave interaction in ionic media JO - Nanosistemy: fizika, himiâ, matematika PY - 2018 SP - 581 EP - 585 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a0/ LA - en ID - NANO_2018_9_5_a0 ER -
%0 Journal Article %A Ram Dayal Pankaj %A Bhawani Singh %A Arun Kumar %T New extended Jacobi elliptic function expansion scheme for wave-wave interaction in ionic media %J Nanosistemy: fizika, himiâ, matematika %D 2018 %P 581-585 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a0/ %G en %F NANO_2018_9_5_a0
Ram Dayal Pankaj; Bhawani Singh; Arun Kumar. New extended Jacobi elliptic function expansion scheme for wave-wave interaction in ionic media. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 5, pp. 581-585. http://geodesic.mathdoc.fr/item/NANO_2018_9_5_a0/