On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 3, pp. 323-329
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we study the global solvability and unsolvability conditions of a nonlinear filtration problem with nonlinear boundary flux. We establish the critical global existence exponent and critical Fujita exponent of nonlinear filtration problem in inhomogeneous medium. An asymptotic representation of the solution with a compact support is obtained, which made it possible to carry out a numerical experiment.
Keywords:
blow-up, critical curve, asymptotic behavior, numerical analysis.
Mots-clés : filtration, global solutions
Mots-clés : filtration, global solutions
@article{NANO_2018_9_3_a2,
author = {Z. R. Rakhmonov and A. I. Tillaev},
title = {On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {323--329},
year = {2018},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_3_a2/}
}
TY - JOUR AU - Z. R. Rakhmonov AU - A. I. Tillaev TI - On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities JO - Nanosistemy: fizika, himiâ, matematika PY - 2018 SP - 323 EP - 329 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/NANO_2018_9_3_a2/ LA - en ID - NANO_2018_9_3_a2 ER -
%0 Journal Article %A Z. R. Rakhmonov %A A. I. Tillaev %T On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities %J Nanosistemy: fizika, himiâ, matematika %D 2018 %P 323-329 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/NANO_2018_9_3_a2/ %G en %F NANO_2018_9_3_a2
Z. R. Rakhmonov; A. I. Tillaev. On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/NANO_2018_9_3_a2/