Inverse dynamic problems for canonical systems and de Branges spaces
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 215-224
Voir la notice de l'article provenant de la source Math-Net.Ru
We show the equivalence of inverse problems for different dynamical systems and corresponding canonical systems. For canonical system with general Hamiltonian we outline the strategy of studying the dynamic inverse problem and procedure of construction of corresponding de Branges space.
Keywords:
inverse problem, Boundary Control method, de Branges spaces, Schrödinger operator, Dirac system, canonical systems.
Mots-clés : Jacobi matrices
Mots-clés : Jacobi matrices
@article{NANO_2018_9_2_a8,
author = {A. S. Mikhailov and V. S. Mikhailov},
title = {Inverse dynamic problems for canonical systems and de {Branges} spaces},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {215--224},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/}
}
TY - JOUR AU - A. S. Mikhailov AU - V. S. Mikhailov TI - Inverse dynamic problems for canonical systems and de Branges spaces JO - Nanosistemy: fizika, himiâ, matematika PY - 2018 SP - 215 EP - 224 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/ LA - en ID - NANO_2018_9_2_a8 ER -
A. S. Mikhailov; V. S. Mikhailov. Inverse dynamic problems for canonical systems and de Branges spaces. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/