Inverse dynamic problems for canonical systems and de Branges spaces
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 215-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show the equivalence of inverse problems for different dynamical systems and corresponding canonical systems. For canonical system with general Hamiltonian we outline the strategy of studying the dynamic inverse problem and procedure of construction of corresponding de Branges space.
Keywords: inverse problem, Boundary Control method, de Branges spaces, Schrödinger operator, Dirac system, canonical systems.
Mots-clés : Jacobi matrices
@article{NANO_2018_9_2_a8,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Inverse dynamic problems for canonical systems and de {Branges} spaces},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {215--224},
     year = {2018},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Inverse dynamic problems for canonical systems and de Branges spaces
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2018
SP  - 215
EP  - 224
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/
LA  - en
ID  - NANO_2018_9_2_a8
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Inverse dynamic problems for canonical systems and de Branges spaces
%J Nanosistemy: fizika, himiâ, matematika
%D 2018
%P 215-224
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/
%G en
%F NANO_2018_9_2_a8
A. S. Mikhailov; V. S. Mikhailov. Inverse dynamic problems for canonical systems and de Branges spaces. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a8/