Solvable models of quantum beating
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170
Voir la notice de l'article provenant de la source Math-Net.Ru
We review some results about the suppression of quantum beating in a one dimensional nonlinear double well potential. We implement a single particle double well potential model, making use of nonlinear point interactions. We show that there is complete suppression of the typical beating phenomenon characterizing the linear quantum case.
Keywords:
nonlinear Schrödinger equation, weakly singular Volterra integral equations, quantum beating.
@article{NANO_2018_9_2_a1,
author = {R. Carlone and R. Figari and C. Negulescu and L. Tentarelli},
title = {Solvable models of quantum beating},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {162--170},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/}
}
TY - JOUR AU - R. Carlone AU - R. Figari AU - C. Negulescu AU - L. Tentarelli TI - Solvable models of quantum beating JO - Nanosistemy: fizika, himiâ, matematika PY - 2018 SP - 162 EP - 170 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/ LA - en ID - NANO_2018_9_2_a1 ER -
R. Carlone; R. Figari; C. Negulescu; L. Tentarelli. Solvable models of quantum beating. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/