Solvable models of quantum beating
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170
Cet article a éte moissonné depuis la source Math-Net.Ru
We review some results about the suppression of quantum beating in a one dimensional nonlinear double well potential. We implement a single particle double well potential model, making use of nonlinear point interactions. We show that there is complete suppression of the typical beating phenomenon characterizing the linear quantum case.
Keywords:
nonlinear Schrödinger equation, weakly singular Volterra integral equations, quantum beating.
@article{NANO_2018_9_2_a1,
author = {R. Carlone and R. Figari and C. Negulescu and L. Tentarelli},
title = {Solvable models of quantum beating},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {162--170},
year = {2018},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/}
}
R. Carlone; R. Figari; C. Negulescu; L. Tentarelli. Solvable models of quantum beating. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/