Solvable models of quantum beating
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review some results about the suppression of quantum beating in a one dimensional nonlinear double well potential. We implement a single particle double well potential model, making use of nonlinear point interactions. We show that there is complete suppression of the typical beating phenomenon characterizing the linear quantum case.
Keywords: nonlinear Schrödinger equation, weakly singular Volterra integral equations, quantum beating.
@article{NANO_2018_9_2_a1,
     author = {R. Carlone and R. Figari and C. Negulescu and L. Tentarelli},
     title = {Solvable models of quantum beating},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {162--170},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/}
}
TY  - JOUR
AU  - R. Carlone
AU  - R. Figari
AU  - C. Negulescu
AU  - L. Tentarelli
TI  - Solvable models of quantum beating
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2018
SP  - 162
EP  - 170
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/
LA  - en
ID  - NANO_2018_9_2_a1
ER  - 
%0 Journal Article
%A R. Carlone
%A R. Figari
%A C. Negulescu
%A L. Tentarelli
%T Solvable models of quantum beating
%J Nanosistemy: fizika, himiâ, matematika
%D 2018
%P 162-170
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/
%G en
%F NANO_2018_9_2_a1
R. Carlone; R. Figari; C. Negulescu; L. Tentarelli. Solvable models of quantum beating. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 162-170. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a1/