Approximation of eigenvalues of Schr\"odinger operators
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 145-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that convergence of l. s. b. closed symmetric sesquilinear forms implies norm resolvent convergence of the associated self-adjoint operators and thus, in turn, convergence of discrete spectra. In this paper, in both cases, sharp estimates for the rate of convergence are derived. An algorithm for the numerical computation of eigenvalues of generalized Schrödinger operators in $L^2(\mathbb{R})$ is presented and illustrated by explicit examples; the mentioned general results on the rate of convergence are applied in order to obtain error estimates for these computations. An extension of the results to Schrödinger operators on metric graphs is sketched.
Keywords: Generalized Schrödinger operators, $\delta$-interactions, eigenvalues.
@article{NANO_2018_9_2_a0,
     author = {J. F. Brasche and R. Fulsche},
     title = {Approximation of eigenvalues of {Schr\"odinger} operators},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {145--161},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a0/}
}
TY  - JOUR
AU  - J. F. Brasche
AU  - R. Fulsche
TI  - Approximation of eigenvalues of Schr\"odinger operators
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2018
SP  - 145
EP  - 161
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a0/
LA  - en
ID  - NANO_2018_9_2_a0
ER  - 
%0 Journal Article
%A J. F. Brasche
%A R. Fulsche
%T Approximation of eigenvalues of Schr\"odinger operators
%J Nanosistemy: fizika, himiâ, matematika
%D 2018
%P 145-161
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a0/
%G en
%F NANO_2018_9_2_a0
J. F. Brasche; R. Fulsche. Approximation of eigenvalues of Schr\"odinger operators. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 145-161. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a0/