Nonlinear topological states in the Su–Schrieffer–Heeger model
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 6, pp. 695-700 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Topological photonics offers unique functionalities in light manipulation at the nanoscale by means of the so-called topological states which are robust against various forms of disorder. One of the simplest one-dimensional models supporting topological states is the Su–Schrieffer–Heeger model. In this paper, we review the physics of the Su–Schrieffer–Heeger model and its nonlinear counterparts exhibiting self-induced, tunable and many-particle edge states. We discuss the robustness of these states, highlighting their rich potential for nanophotonic and quantum optics applications.
Keywords: topological states, nanophotonics, Su–Schrieffer–Heeger model.
@article{NANO_2017_8_6_a0,
     author = {M. A. Gorlach and A. P. Slobozhanyuk},
     title = {Nonlinear topological states in the {Su{\textendash}Schrieffer{\textendash}Heeger} model},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {695--700},
     year = {2017},
     volume = {8},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_6_a0/}
}
TY  - JOUR
AU  - M. A. Gorlach
AU  - A. P. Slobozhanyuk
TI  - Nonlinear topological states in the Su–Schrieffer–Heeger model
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 695
EP  - 700
VL  - 8
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_6_a0/
LA  - en
ID  - NANO_2017_8_6_a0
ER  - 
%0 Journal Article
%A M. A. Gorlach
%A A. P. Slobozhanyuk
%T Nonlinear topological states in the Su–Schrieffer–Heeger model
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 695-700
%V 8
%N 6
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_6_a0/
%G en
%F NANO_2017_8_6_a0
M. A. Gorlach; A. P. Slobozhanyuk. Nonlinear topological states in the Su–Schrieffer–Heeger model. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 6, pp. 695-700. http://geodesic.mathdoc.fr/item/NANO_2017_8_6_a0/