Lyapunov operator $\mathcal{L}$ with degenerate kernel and Gibbs measures
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 5, pp. 553-558
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we studied the fixed points of the Lyapunov operator with degenerate kernel, in which each fixed point of the operator is corresponds to a translation-invariant Gibbs measure with four competing interactions of models with uncountable set of spin values on the Cayley tree of order two. Also, it was proved that Lyapunov operator with degenerate kernel has at most three positive fixed points.
Keywords:
Cayley tree, Gibbs measure, translation-invariant Gibbs measure, Lyupanov operator, degenerate kernel, fixed point.
@article{NANO_2017_8_5_a0,
author = {Yu. Kh. Eshkabilov and F. H. Haydarov},
title = {Lyapunov operator $\mathcal{L}$ with degenerate kernel and {Gibbs} measures},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {553--558},
year = {2017},
volume = {8},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a0/}
}
TY - JOUR
AU - Yu. Kh. Eshkabilov
AU - F. H. Haydarov
TI - Lyapunov operator $\mathcal{L}$ with degenerate kernel and Gibbs measures
JO - Nanosistemy: fizika, himiâ, matematika
PY - 2017
SP - 553
EP - 558
VL - 8
IS - 5
UR - http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a0/
LA - en
ID - NANO_2017_8_5_a0
ER -
Yu. Kh. Eshkabilov; F. H. Haydarov. Lyapunov operator $\mathcal{L}$ with degenerate kernel and Gibbs measures. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 5, pp. 553-558. http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a0/