To the qualitative properties of solution of system equations not in divergence form of polytrophic filtration in variable density
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 3, pp. 317-322
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, the properties of solutions for the nonlinear system equations not in divergence form: \begin{align} |x|^n\frac{\partial u}{\partial t}=u^{\gamma_1}\nabla\bigl( |\nabla u|^{p-2}\nabla u\bigr)+|x|^nu^{q_1}v^{q_2},\notag\\ |x|^n\frac{\partial v}{\partial t}=v^{\gamma_2}\nabla\bigl( |\nabla v|^{p-2}\nabla v\bigr)+|x|^nv^{q_4}u^{q_3}, \notag \end{align} are studied. In this work, we used method of nonlinear splitting, known previously for nonlinear parabolic equations, and systems of equations in divergence form, asymptotic theory and asymptotic methods based on different transformations. Asymptotic representation of self-similar solutions for the nonlinear parabolic system of equations not in divergence form is constructed. The property of finite speed propagation of distributions (FSPD) and the asymptotic behavior of the weak solutions were studied for the slow diffusive case.
Keywords:
nonlinear system of equations, self-similar solutions, asymptotic representation of solution.
Mots-clés : not in divergence form, global solutions
Mots-clés : not in divergence form, global solutions
@article{NANO_2017_8_3_a2,
author = {M. Aripov and A. S. Matyakubov},
title = {To the qualitative properties of solution of system equations not in divergence form of polytrophic filtration in variable density},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {317--322},
year = {2017},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_3_a2/}
}
TY - JOUR AU - M. Aripov AU - A. S. Matyakubov TI - To the qualitative properties of solution of system equations not in divergence form of polytrophic filtration in variable density JO - Nanosistemy: fizika, himiâ, matematika PY - 2017 SP - 317 EP - 322 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/NANO_2017_8_3_a2/ LA - en ID - NANO_2017_8_3_a2 ER -
%0 Journal Article %A M. Aripov %A A. S. Matyakubov %T To the qualitative properties of solution of system equations not in divergence form of polytrophic filtration in variable density %J Nanosistemy: fizika, himiâ, matematika %D 2017 %P 317-322 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/NANO_2017_8_3_a2/ %G en %F NANO_2017_8_3_a2
M. Aripov; A. S. Matyakubov. To the qualitative properties of solution of system equations not in divergence form of polytrophic filtration in variable density. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 3, pp. 317-322. http://geodesic.mathdoc.fr/item/NANO_2017_8_3_a2/