Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 216-230
Cet article a éte moissonné depuis la source Math-Net.Ru
For the analysis of the Schrödinger and related equations it is of central importance whether a unique continuation principle (UCP) holds or not. In continuum Euclidean space, quantitative forms of unique continuation imply Wegner estimates and regularity properties of the integrated density of states (IDS) of Schrödinger operators with random potentials. For discrete Schrödinger equations on the lattice, only a weak analog of the UCP holds, but it is sufficient to guarantee the continuity of the IDS. For other combinatorial graphs, this is no longer true. Similarly, for quantum graphs the UCP does not hold in general and consequently, the IDS does not need to be continuous.
Keywords:
eigenfunctions, Schrödinger equation, Wegner estimate, Integrated density of states.
Mots-clés : unique continuation
Mots-clés : unique continuation
@article{NANO_2017_8_2_a7,
author = {N. Peyerimhoff and M. T\"aufer and I. Veseli\'c},
title = {Unique continuation principles and their absence for {Schr\"odinger} eigenfunctions on combinatorial and quantum graphs and in continuum space},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {216--230},
year = {2017},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/}
}
TY - JOUR AU - N. Peyerimhoff AU - M. Täufer AU - I. Veselić TI - Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space JO - Nanosistemy: fizika, himiâ, matematika PY - 2017 SP - 216 EP - 230 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/ LA - en ID - NANO_2017_8_2_a7 ER -
%0 Journal Article %A N. Peyerimhoff %A M. Täufer %A I. Veselić %T Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space %J Nanosistemy: fizika, himiâ, matematika %D 2017 %P 216-230 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/ %G en %F NANO_2017_8_2_a7
N. Peyerimhoff; M. Täufer; I. Veselić. Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/