Unique continuation principles and their absence for Schr\"odinger eigenfunctions on combinatorial and quantum graphs and in continuum space
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 216-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the analysis of the Schrödinger and related equations it is of central importance whether a unique continuation principle (UCP) holds or not. In continuum Euclidean space, quantitative forms of unique continuation imply Wegner estimates and regularity properties of the integrated density of states (IDS) of Schrödinger operators with random potentials. For discrete Schrödinger equations on the lattice, only a weak analog of the UCP holds, but it is sufficient to guarantee the continuity of the IDS. For other combinatorial graphs, this is no longer true. Similarly, for quantum graphs the UCP does not hold in general and consequently, the IDS does not need to be continuous.
Keywords: eigenfunctions, Schrödinger equation, Wegner estimate, Integrated density of states.
Mots-clés : unique continuation
@article{NANO_2017_8_2_a7,
     author = {N. Peyerimhoff and M. T\"aufer and I. Veseli\'c},
     title = {Unique continuation principles and their absence for {Schr\"odinger} eigenfunctions on combinatorial and quantum graphs and in continuum space},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {216--230},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/}
}
TY  - JOUR
AU  - N. Peyerimhoff
AU  - M. Täufer
AU  - I. Veselić
TI  - Unique continuation principles and their absence for Schr\"odinger eigenfunctions on combinatorial and quantum graphs and in continuum space
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 216
EP  - 230
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/
LA  - en
ID  - NANO_2017_8_2_a7
ER  - 
%0 Journal Article
%A N. Peyerimhoff
%A M. Täufer
%A I. Veselić
%T Unique continuation principles and their absence for Schr\"odinger eigenfunctions on combinatorial and quantum graphs and in continuum space
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 216-230
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/
%G en
%F NANO_2017_8_2_a7
N. Peyerimhoff; M. Täufer; I. Veselić. Unique continuation principles and their absence for Schr\"odinger eigenfunctions on combinatorial and quantum graphs and in continuum space. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a7/