Stationary nonlinear Schr\"odinger equation on the graph for the triangle with outgoing bonds
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 24-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the stationary (cubic) nonlinear Schrödinger equation (NLSE) on a simple metric graph in the form of a triangle with three infinite outgoing bonds. Exact solutions are obtained for primary star graph with the boundary vertex conditions providing the wave function weights continuity and flux conservation for the case of repulsive nonlinearity.
Keywords: Nonlinear Schrödinger equation, a metric graph, repulsive nonlinearity.
@article{NANO_2017_8_1_a3,
     author = {K. K. Sabirov and M. Aripov and D. B. Sagdullayev},
     title = {Stationary nonlinear {Schr\"odinger} equation on the graph for the triangle with outgoing bonds},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {24--28},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a3/}
}
TY  - JOUR
AU  - K. K. Sabirov
AU  - M. Aripov
AU  - D. B. Sagdullayev
TI  - Stationary nonlinear Schr\"odinger equation on the graph for the triangle with outgoing bonds
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 24
EP  - 28
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a3/
LA  - en
ID  - NANO_2017_8_1_a3
ER  - 
%0 Journal Article
%A K. K. Sabirov
%A M. Aripov
%A D. B. Sagdullayev
%T Stationary nonlinear Schr\"odinger equation on the graph for the triangle with outgoing bonds
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 24-28
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a3/
%G en
%F NANO_2017_8_1_a3
K. K. Sabirov; M. Aripov; D. B. Sagdullayev. Stationary nonlinear Schr\"odinger equation on the graph for the triangle with outgoing bonds. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 24-28. http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a3/