On a non-separable quantum many-particle system on the half-line
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we will report on a one-dimensional, non-separable quantum many-particle system. It consists of two (distinguishable) particles moving on the half-line $\mathbb{R}_+$ being subjected to two different kinds of two-particle interactions: singular many-particle interactions localized at the origin and a binding-potential leading to a molecular-like state. We will formulate the model precisely, obtaining a well-defined self-adjoint operator (the Hamiltonian for our system) and elaborate on its spectral properties. In addition, we will present possible directions for future research.
Keywords: singular many-particle interactions, molecule, spectral analysis, quantum graph.
@article{NANO_2017_8_1_a2,
     author = {J. Kerner and T. M\"uhlenbruch},
     title = {On a non-separable quantum many-particle system on the half-line},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {20--23},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a2/}
}
TY  - JOUR
AU  - J. Kerner
AU  - T. Mühlenbruch
TI  - On a non-separable quantum many-particle system on the half-line
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 20
EP  - 23
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a2/
LA  - en
ID  - NANO_2017_8_1_a2
ER  - 
%0 Journal Article
%A J. Kerner
%A T. Mühlenbruch
%T On a non-separable quantum many-particle system on the half-line
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 20-23
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a2/
%G en
%F NANO_2017_8_1_a2
J. Kerner; T. Mühlenbruch. On a non-separable quantum many-particle system on the half-line. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 20-23. http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a2/