Absorbing boundary conditions for Schr\"odinger equation in a time-dependent interval
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the reflection-transmission of the Gaussian wave packet through the moving wall with absorbing boundary conditions based on the time dependent one-dimensional Schrödinger equation. The reflection coefficient is calculated for the case when the walls are fixed, and probability density is calculated for the case when the wall is moving linearly.
Keywords: absorbing boundary conditions, Gaussian wave packet, one-dimensional Schrödinger equation.
@article{NANO_2017_8_1_a1,
     author = {O. Karpova and K. Sabirov and D. Otajanov and A. Ruzmetov and A. Saidov},
     title = {Absorbing boundary conditions for {Schr\"odinger} equation in a time-dependent interval},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a1/}
}
TY  - JOUR
AU  - O. Karpova
AU  - K. Sabirov
AU  - D. Otajanov
AU  - A. Ruzmetov
AU  - A. Saidov
TI  - Absorbing boundary conditions for Schr\"odinger equation in a time-dependent interval
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 13
EP  - 19
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a1/
LA  - en
ID  - NANO_2017_8_1_a1
ER  - 
%0 Journal Article
%A O. Karpova
%A K. Sabirov
%A D. Otajanov
%A A. Ruzmetov
%A A. Saidov
%T Absorbing boundary conditions for Schr\"odinger equation in a time-dependent interval
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 13-19
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a1/
%G en
%F NANO_2017_8_1_a1
O. Karpova; K. Sabirov; D. Otajanov; A. Ruzmetov; A. Saidov. Absorbing boundary conditions for Schr\"odinger equation in a time-dependent interval. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 1, pp. 13-19. http://geodesic.mathdoc.fr/item/NANO_2017_8_1_a1/