Minimum energy path calculations with gaussian process regression
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 6, pp. 925-935.

Voir la notice de l'article provenant de la source Math-Net.Ru

The calculation of minimum energy paths for transitions such as atomic and/or spin rearrangements is an important task in many contexts and can often be used to determine the mechanism and rate of transitions. An important challenge is to reduce the computational effort in such calculations, especially when ab initio or electron density functional calculations are used to evaluate the energy since they can require large computational effort. Gaussian process regression is used here to reduce significantly the number of energy evaluations needed to find minimum energy paths of atomic rearrangements. By using results of previous calculations to construct an approximate energy surface and then converge to the minimum energy path on that surface in each Gaussian process iteration, the number of energy evaluations is reduced significantly as compared with regular nudged elastic band calculations. For a test problem involving rearrangements of a heptamer island on a crystal surface, the number of energy evaluations is reduced to less than a fifth. The scaling of the computational effort with the number of degrees of freedom as well as various possible further improvements to this approach are discussed.
Keywords: minimum energy path, machine learning, Gaussian process, transition mechanism, saddle point.
@article{NANO_2016_7_6_a3,
     author = {O.-P. Koistinen and E. Maras and A. Vehtari and H. J\'onsson},
     title = {Minimum energy path calculations with gaussian process regression},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {925--935},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_6_a3/}
}
TY  - JOUR
AU  - O.-P. Koistinen
AU  - E. Maras
AU  - A. Vehtari
AU  - H. Jónsson
TI  - Minimum energy path calculations with gaussian process regression
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2016
SP  - 925
EP  - 935
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2016_7_6_a3/
LA  - en
ID  - NANO_2016_7_6_a3
ER  - 
%0 Journal Article
%A O.-P. Koistinen
%A E. Maras
%A A. Vehtari
%A H. Jónsson
%T Minimum energy path calculations with gaussian process regression
%J Nanosistemy: fizika, himiâ, matematika
%D 2016
%P 925-935
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2016_7_6_a3/
%G en
%F NANO_2016_7_6_a3
O.-P. Koistinen; E. Maras; A. Vehtari; H. Jónsson. Minimum energy path calculations with gaussian process regression. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 6, pp. 925-935. http://geodesic.mathdoc.fr/item/NANO_2016_7_6_a3/