Cauchy problem for some fourth-order nonstrictly hyperbolic equations
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 869-879
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the analytic solution of the Cauchy problem for some fourth-order linear hyperbolic equations with constant coefficients in a half- plane in the case of two independent variables, assuming certain conditions for the coefficients. Suitable conditions are assumed for the coefficients, and the equation operator is composed of first-order linear operators.
Keywords:
Cauchy problem, analytic solution, fourth-order hyperbolic equations, nonstrictly hyperbolic equations.
@article{NANO_2016_7_5_a8,
author = {V. I. Korzyuk and N. V. Vinh},
title = {Cauchy problem for some fourth-order nonstrictly hyperbolic equations},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {869--879},
publisher = {mathdoc},
volume = {7},
number = {5},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/}
}
TY - JOUR AU - V. I. Korzyuk AU - N. V. Vinh TI - Cauchy problem for some fourth-order nonstrictly hyperbolic equations JO - Nanosistemy: fizika, himiâ, matematika PY - 2016 SP - 869 EP - 879 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/ LA - en ID - NANO_2016_7_5_a8 ER -
V. I. Korzyuk; N. V. Vinh. Cauchy problem for some fourth-order nonstrictly hyperbolic equations. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 869-879. http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/