Cauchy problem for some fourth-order nonstrictly hyperbolic equations
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 869-879.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the analytic solution of the Cauchy problem for some fourth-order linear hyperbolic equations with constant coefficients in a half- plane in the case of two independent variables, assuming certain conditions for the coefficients. Suitable conditions are assumed for the coefficients, and the equation operator is composed of first-order linear operators.
Keywords: Cauchy problem, analytic solution, fourth-order hyperbolic equations, nonstrictly hyperbolic equations.
@article{NANO_2016_7_5_a8,
     author = {V. I. Korzyuk and N. V. Vinh},
     title = {Cauchy problem for some fourth-order nonstrictly hyperbolic equations},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {869--879},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - N. V. Vinh
TI  - Cauchy problem for some fourth-order nonstrictly hyperbolic equations
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2016
SP  - 869
EP  - 879
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/
LA  - en
ID  - NANO_2016_7_5_a8
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A N. V. Vinh
%T Cauchy problem for some fourth-order nonstrictly hyperbolic equations
%J Nanosistemy: fizika, himiâ, matematika
%D 2016
%P 869-879
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/
%G en
%F NANO_2016_7_5_a8
V. I. Korzyuk; N. V. Vinh. Cauchy problem for some fourth-order nonstrictly hyperbolic equations. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 869-879. http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a8/