On resonances and bound states of Smilansky Hamiltonian
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 789-802.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the self-adjoint Smilansky Hamiltonian H$_\varepsilon$ in L$^2(\mathbb{R}^2)$ associated with the formal differential expression $-\partial^2_x-1/2(\partial^2_y+y^2)-\sqrt2\varepsilon y\delta(x)$ in the sub-critical regime, $\varepsilon\in(0,1)$. We demonstrate the existence of resonances for H$_\varepsilon$ on a countable subfamily of sheets of the underlying Riemann surface whose distance from the physical sheet is finite. On such sheets, we find resonance free regions and characterize resonances for small $\varepsilon>0$. In addition, we refine the previously known results on the bound states of H$_\varepsilon$, in the weak coupling regime $(\varepsilon\to0+)$. In the proofs we use Birman–Schwinger principle for H$_\varepsilon$, elements of spectral theory for Jacobi matrices, and the analytic implicit function theorem.
Keywords: Smilansky Hamiltonian, resonances, resonance free region, weak coupling asymptotics, Riemann surface, bound states.
@article{NANO_2016_7_5_a1,
     author = {P. Exner and V. Lotoreichik and M. Tater},
     title = {On resonances and bound states of {Smilansky} {Hamiltonian}},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {789--802},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a1/}
}
TY  - JOUR
AU  - P. Exner
AU  - V. Lotoreichik
AU  - M. Tater
TI  - On resonances and bound states of Smilansky Hamiltonian
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2016
SP  - 789
EP  - 802
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a1/
LA  - en
ID  - NANO_2016_7_5_a1
ER  - 
%0 Journal Article
%A P. Exner
%A V. Lotoreichik
%A M. Tater
%T On resonances and bound states of Smilansky Hamiltonian
%J Nanosistemy: fizika, himiâ, matematika
%D 2016
%P 789-802
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a1/
%G en
%F NANO_2016_7_5_a1
P. Exner; V. Lotoreichik; M. Tater. On resonances and bound states of Smilansky Hamiltonian. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 5, pp. 789-802. http://geodesic.mathdoc.fr/item/NANO_2016_7_5_a1/