Functional equations for the Potts model with competing interactions on a Cayley tree
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 3, pp. 401-404
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider an infinite system of functional equations for the Potts model with competing interactions of radius $r=2$ and countable spin values $0,1,\dots$, and non-zero-filled, on a Cayley tree of order two. We describe conditions on $h_x$ guaranteeing compatibility of distributions $\mu^{(n)}(\sigma_n)$.
Keywords:
Cayley tree, Potts model, Gibbs measures, functional equations.
@article{NANO_2016_7_3_a0,
author = {G. I. Botirov},
title = {Functional equations for the {Potts} model with competing interactions on a {Cayley} tree},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {401--404},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/}
}
TY - JOUR AU - G. I. Botirov TI - Functional equations for the Potts model with competing interactions on a Cayley tree JO - Nanosistemy: fizika, himiâ, matematika PY - 2016 SP - 401 EP - 404 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/ LA - en ID - NANO_2016_7_3_a0 ER -
G. I. Botirov. Functional equations for the Potts model with competing interactions on a Cayley tree. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/