Functional equations for the Potts model with competing interactions on a Cayley tree
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 3, pp. 401-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an infinite system of functional equations for the Potts model with competing interactions of radius $r=2$ and countable spin values $0,1,\dots$, and non-zero-filled, on a Cayley tree of order two. We describe conditions on $h_x$ guaranteeing compatibility of distributions $\mu^{(n)}(\sigma_n)$.
Keywords: Cayley tree, Potts model, Gibbs measures, functional equations.
@article{NANO_2016_7_3_a0,
     author = {G. I. Botirov},
     title = {Functional equations for the {Potts} model with competing interactions on a {Cayley} tree},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {401--404},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/}
}
TY  - JOUR
AU  - G. I. Botirov
TI  - Functional equations for the Potts model with competing interactions on a Cayley tree
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2016
SP  - 401
EP  - 404
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/
LA  - en
ID  - NANO_2016_7_3_a0
ER  - 
%0 Journal Article
%A G. I. Botirov
%T Functional equations for the Potts model with competing interactions on a Cayley tree
%J Nanosistemy: fizika, himiâ, matematika
%D 2016
%P 401-404
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/
%G en
%F NANO_2016_7_3_a0
G. I. Botirov. Functional equations for the Potts model with competing interactions on a Cayley tree. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/NANO_2016_7_3_a0/