Laplacians with singular perturbations supported on hypersurfaces
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 315-323
Voir la notice de l'article provenant de la source Math-Net.Ru
We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the $n$-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This allows one to obtain Krein-like resolvent formulae where the reference operator coincides with the free self-adjoint Laplacian in $\mathbb{R}^n$, providing in this way with an useful tool for the scattering problem from a hypersurface. As examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on an unclosed hypersurface.
Keywords:
Krein's resolvent formula, boundary conditions, self-adjoint extensions.
@article{NANO_2016_7_2_a3,
author = {A. Mantile and A. Posilicano},
title = {Laplacians with singular perturbations supported on hypersurfaces},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {315--323},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a3/}
}
TY - JOUR AU - A. Mantile AU - A. Posilicano TI - Laplacians with singular perturbations supported on hypersurfaces JO - Nanosistemy: fizika, himiâ, matematika PY - 2016 SP - 315 EP - 323 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a3/ LA - en ID - NANO_2016_7_2_a3 ER -
A. Mantile; A. Posilicano. Laplacians with singular perturbations supported on hypersurfaces. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 315-323. http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a3/