Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 290-302
Voir la notice de l'article provenant de la source Math-Net.Ru
The self-adjoint Schrödinger operator $A_{\delta,\alpha}$ with a $\delta$-interaction of constant strength $\alpha$ supported on a compact smooth hypersurface $\mathcal{C}$ is viewed as a self-adjoint extension of a natural underlying symmetric operator $S$ in $L^2(\mathbb{R}^n)$. The aim of this note is to construct a boundary triple for $S^*$ and a self-adjoint parameter $\Theta_{\delta,\alpha}$ in the boundary space $L^2(\mathcal{C})$ such that $A_{\delta,\alpha}$ corresponds to the boundary condition induced by $\Theta_{\delta,\alpha}$. As a consequence, the well-developed theory of boundary triples and their Weyl functions can be applied. This leads, in particular, to a Krein-type resolvent formula and a description of the spectrum of $A_{\delta,\alpha}$ in terms of the Weyl function and $\Theta_{\delta,\alpha}$.
Keywords:
Boundary triple, Weyl function, Schrödinger operator, singular potential, $\delta$-interaction
Mots-clés : hypersurface.
Mots-clés : hypersurface.
@article{NANO_2016_7_2_a1,
author = {J. Behrndt and M. Langer and V. Lotoreichik},
title = {Boundary triples for {Schr\"odinger} operators with singular interactions on hypersurfaces},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {290--302},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/}
}
TY - JOUR AU - J. Behrndt AU - M. Langer AU - V. Lotoreichik TI - Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces JO - Nanosistemy: fizika, himiâ, matematika PY - 2016 SP - 290 EP - 302 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/ LA - en ID - NANO_2016_7_2_a1 ER -
%0 Journal Article %A J. Behrndt %A M. Langer %A V. Lotoreichik %T Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces %J Nanosistemy: fizika, himiâ, matematika %D 2016 %P 290-302 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/ %G en %F NANO_2016_7_2_a1
J. Behrndt; M. Langer; V. Lotoreichik. Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 290-302. http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/