Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces
Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 290-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

The self-adjoint Schrödinger operator $A_{\delta,\alpha}$ with a $\delta$-interaction of constant strength $\alpha$ supported on a compact smooth hypersurface $\mathcal{C}$ is viewed as a self-adjoint extension of a natural underlying symmetric operator $S$ in $L^2(\mathbb{R}^n)$. The aim of this note is to construct a boundary triple for $S^*$ and a self-adjoint parameter $\Theta_{\delta,\alpha}$ in the boundary space $L^2(\mathcal{C})$ such that $A_{\delta,\alpha}$ corresponds to the boundary condition induced by $\Theta_{\delta,\alpha}$. As a consequence, the well-developed theory of boundary triples and their Weyl functions can be applied. This leads, in particular, to a Krein-type resolvent formula and a description of the spectrum of $A_{\delta,\alpha}$ in terms of the Weyl function and $\Theta_{\delta,\alpha}$.
Keywords: Boundary triple, Weyl function, Schrödinger operator, singular potential, $\delta$-interaction
Mots-clés : hypersurface.
@article{NANO_2016_7_2_a1,
     author = {J. Behrndt and M. Langer and V. Lotoreichik},
     title = {Boundary triples for {Schr\"odinger} operators with singular interactions on hypersurfaces},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {290--302},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/}
}
TY  - JOUR
AU  - J. Behrndt
AU  - M. Langer
AU  - V. Lotoreichik
TI  - Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2016
SP  - 290
EP  - 302
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/
LA  - en
ID  - NANO_2016_7_2_a1
ER  - 
%0 Journal Article
%A J. Behrndt
%A M. Langer
%A V. Lotoreichik
%T Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces
%J Nanosistemy: fizika, himiâ, matematika
%D 2016
%P 290-302
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/
%G en
%F NANO_2016_7_2_a1
J. Behrndt; M. Langer; V. Lotoreichik. Boundary triples for Schr\"odinger operators with singular interactions on hypersurfaces. Nanosistemy: fizika, himiâ, matematika, Tome 7 (2016) no. 2, pp. 290-302. http://geodesic.mathdoc.fr/item/NANO_2016_7_2_a1/