The Green function for simplest quantum graphs
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 762-766.

Voir la notice de l'article provenant de la source Math-Net.Ru

We treat the problem of the Green function for quantum graphs by focusing on such topologies as star and tree graphs. The exact Green function for the Schrödinger equation on primary star graphs is derived in the form of 3$\times$3 – matrix using the vertex boundary conditions providing continuity and current conservation. Extension of the approach for the derivation for the Green function on tree graph is presented. Possible practical applications of the obtained results are discussed.
Keywords: quantum graphs, Green function, vertex boundary conditions.
@article{NANO_2015_6_6_a3,
     author = {K. K. Sabirov and U. A. Aminov and Kh. Sh. Saparov and M. K. Karimov and Kh. E. Abdikarimov},
     title = {The {Green} function for simplest quantum graphs},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {762--766},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a3/}
}
TY  - JOUR
AU  - K. K. Sabirov
AU  - U. A. Aminov
AU  - Kh. Sh. Saparov
AU  - M. K. Karimov
AU  - Kh. E. Abdikarimov
TI  - The Green function for simplest quantum graphs
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 762
EP  - 766
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a3/
LA  - en
ID  - NANO_2015_6_6_a3
ER  - 
%0 Journal Article
%A K. K. Sabirov
%A U. A. Aminov
%A Kh. Sh. Saparov
%A M. K. Karimov
%A Kh. E. Abdikarimov
%T The Green function for simplest quantum graphs
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 762-766
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a3/
%G en
%F NANO_2015_6_6_a3
K. K. Sabirov; U. A. Aminov; Kh. Sh. Saparov; M. K. Karimov; Kh. E. Abdikarimov. The Green function for simplest quantum graphs. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 762-766. http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a3/