Linearized KdV equation on a metric graph
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 757-761
Voir la notice de l'article provenant de la source Math-Net.Ru
We address a linearized KdV equation on metric star graphs with one incoming finite bond and two outgoing semi-infinite bonds. Using the theory of potentials, we reduce the problem to systems of linear integral equations and show that they are uniquely solvable under conditions of the uniqueness theorem.
Keywords:
KdV, IBVP, PDE on metric graphs, third order differential equations.
Mots-clés : exact solution
Mots-clés : exact solution
@article{NANO_2015_6_6_a2,
author = {Z. A. Sobirov and M. I. Akhmedov and O. V. Karpova and B. Jabbarova},
title = {Linearized {KdV} equation on a metric graph},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {757--761},
publisher = {mathdoc},
volume = {6},
number = {6},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/}
}
TY - JOUR AU - Z. A. Sobirov AU - M. I. Akhmedov AU - O. V. Karpova AU - B. Jabbarova TI - Linearized KdV equation on a metric graph JO - Nanosistemy: fizika, himiâ, matematika PY - 2015 SP - 757 EP - 761 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/ LA - en ID - NANO_2015_6_6_a2 ER -
Z. A. Sobirov; M. I. Akhmedov; O. V. Karpova; B. Jabbarova. Linearized KdV equation on a metric graph. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 757-761. http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/