Linearized KdV equation on a metric graph
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 757-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

We address a linearized KdV equation on metric star graphs with one incoming finite bond and two outgoing semi-infinite bonds. Using the theory of potentials, we reduce the problem to systems of linear integral equations and show that they are uniquely solvable under conditions of the uniqueness theorem.
Keywords: KdV, IBVP, PDE on metric graphs, third order differential equations.
Mots-clés : exact solution
@article{NANO_2015_6_6_a2,
     author = {Z. A. Sobirov and M. I. Akhmedov and O. V. Karpova and B. Jabbarova},
     title = {Linearized {KdV} equation on a metric graph},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {757--761},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/}
}
TY  - JOUR
AU  - Z. A. Sobirov
AU  - M. I. Akhmedov
AU  - O. V. Karpova
AU  - B. Jabbarova
TI  - Linearized KdV equation on a metric graph
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 757
EP  - 761
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/
LA  - en
ID  - NANO_2015_6_6_a2
ER  - 
%0 Journal Article
%A Z. A. Sobirov
%A M. I. Akhmedov
%A O. V. Karpova
%A B. Jabbarova
%T Linearized KdV equation on a metric graph
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 757-761
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/
%G en
%F NANO_2015_6_6_a2
Z. A. Sobirov; M. I. Akhmedov; O. V. Karpova; B. Jabbarova. Linearized KdV equation on a metric graph. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 6, pp. 757-761. http://geodesic.mathdoc.fr/item/NANO_2015_6_6_a2/