Analytical benchmark solutions for nanotube flows with variable viscosity
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 672-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional Stokes equations with variable viscosity in cylindrical coordinates are considered. This case is natural for flow through a nanotube in biological applications. We obtain exact particular solutions – a benchmark for numerical approache.
Keywords: Stokes flow, variable viscosity, multigrid methods, benchmark solutions.
@article{NANO_2015_6_5_a7,
     author = {I. V. Makeev and I. V. Blinova and I. Yu. Popov},
     title = {Analytical benchmark solutions for nanotube flows with variable viscosity},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {672--679},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/}
}
TY  - JOUR
AU  - I. V. Makeev
AU  - I. V. Blinova
AU  - I. Yu. Popov
TI  - Analytical benchmark solutions for nanotube flows with variable viscosity
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 672
EP  - 679
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/
LA  - en
ID  - NANO_2015_6_5_a7
ER  - 
%0 Journal Article
%A I. V. Makeev
%A I. V. Blinova
%A I. Yu. Popov
%T Analytical benchmark solutions for nanotube flows with variable viscosity
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 672-679
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/
%G en
%F NANO_2015_6_5_a7
I. V. Makeev; I. V. Blinova; I. Yu. Popov. Analytical benchmark solutions for nanotube flows with variable viscosity. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 672-679. http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/