Analytical benchmark solutions for nanotube flows with variable viscosity
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 672-679
Cet article a éte moissonné depuis la source Math-Net.Ru
Three-dimensional Stokes equations with variable viscosity in cylindrical coordinates are considered. This case is natural for flow through a nanotube in biological applications. We obtain exact particular solutions – a benchmark for numerical approache.
Keywords:
Stokes flow, variable viscosity, multigrid methods, benchmark solutions.
@article{NANO_2015_6_5_a7,
author = {I. V. Makeev and I. V. Blinova and I. Yu. Popov},
title = {Analytical benchmark solutions for nanotube flows with variable viscosity},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {672--679},
year = {2015},
volume = {6},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/}
}
TY - JOUR AU - I. V. Makeev AU - I. V. Blinova AU - I. Yu. Popov TI - Analytical benchmark solutions for nanotube flows with variable viscosity JO - Nanosistemy: fizika, himiâ, matematika PY - 2015 SP - 672 EP - 679 VL - 6 IS - 5 UR - http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/ LA - en ID - NANO_2015_6_5_a7 ER -
I. V. Makeev; I. V. Blinova; I. Yu. Popov. Analytical benchmark solutions for nanotube flows with variable viscosity. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 672-679. http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a7/