On positive solutions of the homogeneous Hammerstein integral equation
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 618-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the existence and uniqueness of positive fixed points operator for a nonlinear integral operator are discussed. We prove the existence of a finite number of positive solutions for the Hammerstein type of integral equation. Obtained results are applied to the study of Gibbs measures for models on a Cayley tree.
Keywords: integral equation of Hammerstein type, fixed point of operator, Gibbs measure, Cayley tree.
@article{NANO_2015_6_5_a1,
     author = {Yu. Kh. Eshkabilov and F. H. Haydarov},
     title = {On positive solutions of the homogeneous {Hammerstein} integral equation},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {618--627},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
AU  - F. H. Haydarov
TI  - On positive solutions of the homogeneous Hammerstein integral equation
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 618
EP  - 627
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/
LA  - en
ID  - NANO_2015_6_5_a1
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%A F. H. Haydarov
%T On positive solutions of the homogeneous Hammerstein integral equation
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 618-627
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/
%G en
%F NANO_2015_6_5_a1
Yu. Kh. Eshkabilov; F. H. Haydarov. On positive solutions of the homogeneous Hammerstein integral equation. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 618-627. http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/