On positive solutions of the homogeneous Hammerstein integral equation
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 618-627
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the existence and uniqueness of positive fixed points operator for a nonlinear integral operator are discussed. We prove the existence of a finite number of positive solutions for the Hammerstein type of integral equation. Obtained results are applied to the study of Gibbs measures for models on a Cayley tree.
Keywords:
integral equation of Hammerstein type, fixed point of operator, Gibbs measure, Cayley tree.
@article{NANO_2015_6_5_a1,
author = {Yu. Kh. Eshkabilov and F. H. Haydarov},
title = {On positive solutions of the homogeneous {Hammerstein} integral equation},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {618--627},
publisher = {mathdoc},
volume = {6},
number = {5},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/}
}
TY - JOUR AU - Yu. Kh. Eshkabilov AU - F. H. Haydarov TI - On positive solutions of the homogeneous Hammerstein integral equation JO - Nanosistemy: fizika, himiâ, matematika PY - 2015 SP - 618 EP - 627 VL - 6 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/ LA - en ID - NANO_2015_6_5_a1 ER -
Yu. Kh. Eshkabilov; F. H. Haydarov. On positive solutions of the homogeneous Hammerstein integral equation. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 5, pp. 618-627. http://geodesic.mathdoc.fr/item/NANO_2015_6_5_a1/