Topological damping of Aharonov–Bohm effect: quantum graphs and vertex conditions
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 3, pp. 309-319
Cet article a éte moissonné depuis la source Math-Net.Ru
The magnetic Schroödinger operator was studied on a figure 8-shaped graph. It is shown that for specially chosen vertex conditions, the spectrum of the magnetic operator is independent of the flux through one of the loops, provided the flux through the other loop is zero. Topological reasons for this effect are explained.
Keywords:
quantum graphs, magnetic field
Mots-clés : trace formula.
Mots-clés : trace formula.
@article{NANO_2015_6_3_a0,
author = {P. Kurasov and A. Serio},
title = {Topological damping of {Aharonov{\textendash}Bohm} effect: quantum graphs and vertex conditions},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {309--319},
year = {2015},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_3_a0/}
}
TY - JOUR AU - P. Kurasov AU - A. Serio TI - Topological damping of Aharonov–Bohm effect: quantum graphs and vertex conditions JO - Nanosistemy: fizika, himiâ, matematika PY - 2015 SP - 309 EP - 319 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/NANO_2015_6_3_a0/ LA - en ID - NANO_2015_6_3_a0 ER -
P. Kurasov; A. Serio. Topological damping of Aharonov–Bohm effect: quantum graphs and vertex conditions. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/NANO_2015_6_3_a0/