The relativistic inverse scattering problem for quantum graphs
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 2, pp. 192-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we treat the inverse scattering problem for the Dirac equation on metric graphs. Using the known scattering data, we recover the potential in the Dirac equation. The Gel'fand–Levitan–Marchenko integral equation is derived and potential is explicitly obtained for the case of a primary star graph.
Keywords: quantum graph, inverse scattering problem
Mots-clés : Dirac equation.
@article{NANO_2015_6_2_a3,
     author = {K. K. Sabirov and Z. A. Sobirov and O. V. Karpova and A. A. Saidov},
     title = {The relativistic inverse scattering problem for quantum graphs},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {192--197},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a3/}
}
TY  - JOUR
AU  - K. K. Sabirov
AU  - Z. A. Sobirov
AU  - O. V. Karpova
AU  - A. A. Saidov
TI  - The relativistic inverse scattering problem for quantum graphs
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 192
EP  - 197
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a3/
LA  - en
ID  - NANO_2015_6_2_a3
ER  - 
%0 Journal Article
%A K. K. Sabirov
%A Z. A. Sobirov
%A O. V. Karpova
%A A. A. Saidov
%T The relativistic inverse scattering problem for quantum graphs
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 192-197
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a3/
%G en
%F NANO_2015_6_2_a3
K. K. Sabirov; Z. A. Sobirov; O. V. Karpova; A. A. Saidov. The relativistic inverse scattering problem for quantum graphs. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 2, pp. 192-197. http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a3/