Renyi entropy for the doped graphene at low temperatures
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 2, pp. 274-279
Cet article a éte moissonné depuis la source Math-Net.Ru
The distribution function for the perimeter of a simply connected cluster containing undoped lattice sites is based on percolation theory and the hypothesis of scale invariance. The Renyi entropy for doped graphene at low temperatures was calculated on the basis of this distribution function.
Keywords:
Renyi entropy.
Mots-clés : nanostructure, graphene
Mots-clés : nanostructure, graphene
@article{NANO_2015_6_2_a13,
author = {N. N. Konobeeva and A. A. Polunina and M. B. Belonenko},
title = {Renyi entropy for the doped graphene at low temperatures},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {274--279},
year = {2015},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a13/}
}
TY - JOUR AU - N. N. Konobeeva AU - A. A. Polunina AU - M. B. Belonenko TI - Renyi entropy for the doped graphene at low temperatures JO - Nanosistemy: fizika, himiâ, matematika PY - 2015 SP - 274 EP - 279 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a13/ LA - en ID - NANO_2015_6_2_a13 ER -
N. N. Konobeeva; A. A. Polunina; M. B. Belonenko. Renyi entropy for the doped graphene at low temperatures. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 2, pp. 274-279. http://geodesic.mathdoc.fr/item/NANO_2015_6_2_a13/