Tunneling in multidimensional wells
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 113-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

A full asymptotic series for low eigenvalues and eigenfunctions of a stationary Schrödinger operator with a nondegenerate well was constructed in [29]. This allowed us to describe the tunneling effect for a potential with two or more identical wells with sufficient accuracy. The procedure is described in the following discussion. Some formulae are obtained and corresponding problems are discussed.
Keywords: Shrödinger operator, potential, tunneling, eigenvalues and eigenfunctions.
@article{NANO_2015_6_1_a7,
     author = {T. F. Pankratova},
     title = {Tunneling in multidimensional wells},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a7/}
}
TY  - JOUR
AU  - T. F. Pankratova
TI  - Tunneling in multidimensional wells
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 113
EP  - 121
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a7/
LA  - en
ID  - NANO_2015_6_1_a7
ER  - 
%0 Journal Article
%A T. F. Pankratova
%T Tunneling in multidimensional wells
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 113-121
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a7/
%G en
%F NANO_2015_6_1_a7
T. F. Pankratova. Tunneling in multidimensional wells. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 113-121. http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a7/