On the derivation of the Schr\"odinger equation with point-like nonlinearity
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 79-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this report we discuss the problem of approximating nonlinear delta-interactions in dimensions one and three with regular, local or non-local nonlinearities. Concerning the one dimensional case, we discuss a recent result proved in [10], on the derivation of nonlinear delta-interactions as limit of scaled, local nonlinearities. For the three dimensional case, we consider an equation with scaled, non-local nonlinearity. We conjecture that such an equation approximates the nonlinear delta-interaction, and give an heuristic argument to support our conjecture.
Keywords: Nonlinear Schrödinger equation, nonlinear delta interactions, zero-range limit of concentrated nonlinearities.
@article{NANO_2015_6_1_a4,
     author = {C. Cacciapuoti},
     title = {On the derivation of the {Schr\"odinger} equation with point-like nonlinearity},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {79--94},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a4/}
}
TY  - JOUR
AU  - C. Cacciapuoti
TI  - On the derivation of the Schr\"odinger equation with point-like nonlinearity
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2015
SP  - 79
EP  - 94
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a4/
LA  - en
ID  - NANO_2015_6_1_a4
ER  - 
%0 Journal Article
%A C. Cacciapuoti
%T On the derivation of the Schr\"odinger equation with point-like nonlinearity
%J Nanosistemy: fizika, himiâ, matematika
%D 2015
%P 79-94
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a4/
%G en
%F NANO_2015_6_1_a4
C. Cacciapuoti. On the derivation of the Schr\"odinger equation with point-like nonlinearity. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 79-94. http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a4/