On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon
Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 46-56
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Omega\subset\mathbb{R}^2$ be the exterior of a convex polygon whose side lengths are $\ell_1,\dots,\ell_M$. For a real constant $\alpha$, let $H_\alpha^\Omega$ denote the Laplacian in $\Omega$, $u\mapsto -\Delta u$, with the Robin boundary conditions $\partial u/\partial\nu=\alpha u$ at $\partial\Omega$, where $\nu$ is the outer unit normal. We show that, for any fixed $m\in\mathbb{N}$, the $m$th eigenvalue $E_m^\Omega(\alpha)$ of $H_\alpha^\Omega$ behaves as $E_m^\Omega(\alpha)=-\alpha^2+\mu_m^D+\mathcal{O}(\alpha^{-1/2})$ as $\alpha\to+\infty$ where $\mu_m^D$ stands for the $m$th eigenvalue of the operator $D_1\oplus\cdots\oplus D_M$ and $D_n$ denotes the one-dimensional Laplacian $f\mapsto -f''$ on $(0,\ell_n)$ with the Dirichlet boundary conditions.
Keywords:
eigenvalue asymptotics, Laplacian, Robin boundary condition, Dirichlet boundary condition.
@article{NANO_2015_6_1_a1,
author = {Konstantin Pankrashkin},
title = {On the {Robin} eigenvalues of the {Laplacian} in the exterior of a convex polygon},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {46--56},
year = {2015},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a1/}
}
Konstantin Pankrashkin. On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon. Nanosistemy: fizika, himiâ, matematika, Tome 6 (2015) no. 1, pp. 46-56. http://geodesic.mathdoc.fr/item/NANO_2015_6_1_a1/