Diffusion and Laplacian transport for absorbing domains
Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 4, pp. 446-466
Cet article a éte moissonné depuis la source Math-Net.Ru
We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results concern a formal solution of the geometrically inverse problem for localisation and reconstruction of the form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases. We show that the last case can be studied by the conformal mapping technique. To illustrate this, we scrutinize the constant boundary conditions and analyze a numeric example.
Keywords:
Laplacian transport, dirichlet-to-Neumann operators, conformal mapping.
@article{NANO_2013_4_4_a0,
author = {Ibrahim Baydoun and Valentin A. Zagrebnov},
title = {Diffusion and {Laplacian} transport for absorbing domains},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {446--466},
year = {2013},
volume = {4},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2013_4_4_a0/}
}
Ibrahim Baydoun; Valentin A. Zagrebnov. Diffusion and Laplacian transport for absorbing domains. Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 4, pp. 446-466. http://geodesic.mathdoc.fr/item/NANO_2013_4_4_a0/