Method of symmetric polynomials in the computations of scattering matrix
Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 3, pp. 306-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for calculating any analytic matrix function by means of symmetric polynomials is presented. The method of symmetric polynomials (MSP) is applied to the calculation of the fundamental matrix of a differential equations system. The scaling method is developed for computation of the scattering matrix. An analytical estimate of the scaling parameter, allowing the calculation of the matrix exponential with the required reliability and accuracy is obtained. This parameter depends on the matrix order n, the value of the matrix elements and layer thickness.
Keywords: layered media, exponential, symmetric polynomials, roundoff error, truncation error, scaling.
Mots-clés : matrix
@article{NANO_2013_4_3_a0,
     author = {Yu. N. Belyaev},
     title = {Method of symmetric polynomials in the computations of scattering matrix},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {306--312},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2013_4_3_a0/}
}
TY  - JOUR
AU  - Yu. N. Belyaev
TI  - Method of symmetric polynomials in the computations of scattering matrix
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2013
SP  - 306
EP  - 312
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2013_4_3_a0/
LA  - en
ID  - NANO_2013_4_3_a0
ER  - 
%0 Journal Article
%A Yu. N. Belyaev
%T Method of symmetric polynomials in the computations of scattering matrix
%J Nanosistemy: fizika, himiâ, matematika
%D 2013
%P 306-312
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2013_4_3_a0/
%G en
%F NANO_2013_4_3_a0
Yu. N. Belyaev. Method of symmetric polynomials in the computations of scattering matrix. Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 3, pp. 306-312. http://geodesic.mathdoc.fr/item/NANO_2013_4_3_a0/