Hamiltonian with zero-range potentials having infinite number of eigenvalues
Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 4, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Infinite chain of zero-range potentials having the Hamiltonian with infinite number of eigenvalues below the continuous spectrum is constructed. The model is based on the theory of self-adjoint extensions of symmetric operators.
Keywords: operator extensions theory, point spectrum.
Mots-clés : singular perturbation
@article{NANO_2012_3_4_a0,
     author = {A. A. Boitsev and I. Yu. Popov and O. V. Sokolov},
     title = {Hamiltonian with zero-range potentials having infinite number of eigenvalues},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/}
}
TY  - JOUR
AU  - A. A. Boitsev
AU  - I. Yu. Popov
AU  - O. V. Sokolov
TI  - Hamiltonian with zero-range potentials having infinite number of eigenvalues
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2012
SP  - 9
EP  - 19
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/
LA  - ru
ID  - NANO_2012_3_4_a0
ER  - 
%0 Journal Article
%A A. A. Boitsev
%A I. Yu. Popov
%A O. V. Sokolov
%T Hamiltonian with zero-range potentials having infinite number of eigenvalues
%J Nanosistemy: fizika, himiâ, matematika
%D 2012
%P 9-19
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/
%G ru
%F NANO_2012_3_4_a0
A. A. Boitsev; I. Yu. Popov; O. V. Sokolov. Hamiltonian with zero-range potentials having infinite number of eigenvalues. Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 4, pp. 9-19. http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/