Hamiltonian with zero-range potentials having infinite number of eigenvalues
Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 4, pp. 9-19
Cet article a éte moissonné depuis la source Math-Net.Ru
Infinite chain of zero-range potentials having the Hamiltonian with infinite number of eigenvalues below the continuous spectrum is constructed. The model is based on the theory of self-adjoint extensions of symmetric operators.
Keywords:
operator extensions theory, point spectrum.
Mots-clés : singular perturbation
Mots-clés : singular perturbation
@article{NANO_2012_3_4_a0,
author = {A. A. Boitsev and I. Yu. Popov and O. V. Sokolov},
title = {Hamiltonian with zero-range potentials having infinite number of eigenvalues},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {9--19},
year = {2012},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/}
}
TY - JOUR AU - A. A. Boitsev AU - I. Yu. Popov AU - O. V. Sokolov TI - Hamiltonian with zero-range potentials having infinite number of eigenvalues JO - Nanosistemy: fizika, himiâ, matematika PY - 2012 SP - 9 EP - 19 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/ LA - ru ID - NANO_2012_3_4_a0 ER -
A. A. Boitsev; I. Yu. Popov; O. V. Sokolov. Hamiltonian with zero-range potentials having infinite number of eigenvalues. Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 4, pp. 9-19. http://geodesic.mathdoc.fr/item/NANO_2012_3_4_a0/