Flows in nanostructures: hybrid classical-quantum models
Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 1, pp. 7-26
Cet article a éte moissonné depuis la source Math-Net.Ru
Flow through nanotube has many interesting peculiarities.To describe these unusual properties we suggest a model of the flow based on crystallite liquid theory. Slip boundary condition is used instead of conventional no-slip condition. The condition is derived by consideration of interaction of flow particles with the nanotube wall potential in the framework of quantum mechanics. For nanotube with elastic walls another mechanism of flow plays an important role. Namely, a model of flow caused by elastic soliton wave in its wall is suggested. As for general consideration, a modification of the Navier–Stokes equations for the nanotube flow is derived from many-particle Hamiltonian in the framework of quantum statistical physics. Particularly, for a model confinement the effective viscosity of the nanotube flow is got. The obtained dependence of the viscosity on the nanotube diameter is in good correlation with the corresponding experimental results.
Keywords:
nanotube, flow, crystallite, quantum statistics.
Mots-clés : soliton
Mots-clés : soliton
@article{NANO_2012_3_1_a0,
author = {S. A. Chivilikhin and V. V. Gusarov and I. Yu. Popov},
title = {Flows in nanostructures: hybrid classical-quantum models},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {7--26},
year = {2012},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2012_3_1_a0/}
}
TY - JOUR AU - S. A. Chivilikhin AU - V. V. Gusarov AU - I. Yu. Popov TI - Flows in nanostructures: hybrid classical-quantum models JO - Nanosistemy: fizika, himiâ, matematika PY - 2012 SP - 7 EP - 26 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/NANO_2012_3_1_a0/ LA - en ID - NANO_2012_3_1_a0 ER -
S. A. Chivilikhin; V. V. Gusarov; I. Yu. Popov. Flows in nanostructures: hybrid classical-quantum models. Nanosistemy: fizika, himiâ, matematika, Tome 3 (2012) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/NANO_2012_3_1_a0/