Which 4-manifolds are toric varieties?
Mathematische Zeitschrift, Tome 215 (1994) no. 1, pp. 179-186.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : toric varieties, nonsingular 4-dimensional toric varieties, intersection form, smooth category, Kirby calculus, complex projective plane, product of spheres
@article{MZ_1994__215_1_174605,
     author = {Stephan Fischli and David Yavin},
     title = {Which 4-manifolds are toric varieties?},
     journal = {Mathematische Zeitschrift},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {215},
     number = {1},
     year = {1994},
     zbl = {0790.57007},
     url = {http://geodesic.mathdoc.fr/item/MZ_1994__215_1_174605/}
}
TY  - JOUR
AU  - Stephan Fischli
AU  - David Yavin
TI  - Which 4-manifolds are toric varieties?
JO  - Mathematische Zeitschrift
PY  - 1994
SP  - 179
EP  - 186
VL  - 215
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZ_1994__215_1_174605/
ID  - MZ_1994__215_1_174605
ER  - 
%0 Journal Article
%A Stephan Fischli
%A David Yavin
%T Which 4-manifolds are toric varieties?
%J Mathematische Zeitschrift
%D 1994
%P 179-186
%V 215
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZ_1994__215_1_174605/
%F MZ_1994__215_1_174605
Stephan Fischli; David Yavin. Which 4-manifolds are toric varieties?. Mathematische Zeitschrift, Tome 215 (1994) no. 1, pp. 179-186. http://geodesic.mathdoc.fr/item/MZ_1994__215_1_174605/