Length spectrum invariants of Riemannian manifolds.
Mathematische Zeitschrift, Tome 213 (1993) no. 1, pp. 311-352.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : length spectrum, periodic geodesics, closed elliptic geodesics, Liouville class, Laplace-Beltrami operator
@article{MZ_1993__213_1_174532,
     author = {Georgi S. Popov},
     title = {Length spectrum invariants of {Riemannian} manifolds.},
     journal = {Mathematische Zeitschrift},
     pages = {311--352},
     publisher = {mathdoc},
     volume = {213},
     number = {1},
     year = {1993},
     zbl = {0804.53068},
     url = {http://geodesic.mathdoc.fr/item/MZ_1993__213_1_174532/}
}
TY  - JOUR
AU  - Georgi S. Popov
TI  - Length spectrum invariants of Riemannian manifolds.
JO  - Mathematische Zeitschrift
PY  - 1993
SP  - 311
EP  - 352
VL  - 213
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZ_1993__213_1_174532/
ID  - MZ_1993__213_1_174532
ER  - 
%0 Journal Article
%A Georgi S. Popov
%T Length spectrum invariants of Riemannian manifolds.
%J Mathematische Zeitschrift
%D 1993
%P 311-352
%V 213
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZ_1993__213_1_174532/
%F MZ_1993__213_1_174532
Georgi S. Popov. Length spectrum invariants of Riemannian manifolds.. Mathematische Zeitschrift, Tome 213 (1993) no. 1, pp. 311-352. http://geodesic.mathdoc.fr/item/MZ_1993__213_1_174532/