Amenability, unimodularity, and the spectral radius of random walks on finite graphs.
Mathematische Zeitschrift, Tome 205 (1990) no. 3, pp. 471-486
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
vertex-transitive group of automorphisms, locally finite, infinite connected graph, simple random walk, spectral radius, amenable, unimodular, norm, radial transition operators, homogeneous tree
@article{MZ_1990__205_3_174188,
author = {Wolfgang Woess and Paolo M. Soardi},
title = {Amenability, unimodularity, and the spectral radius of random walks on finite graphs.},
journal = {Mathematische Zeitschrift},
pages = {471--486},
publisher = {mathdoc},
volume = {205},
number = {3},
year = {1990},
zbl = {0693.43001},
url = {http://geodesic.mathdoc.fr/item/MZ_1990__205_3_174188/}
}
TY - JOUR AU - Wolfgang Woess AU - Paolo M. Soardi TI - Amenability, unimodularity, and the spectral radius of random walks on finite graphs. JO - Mathematische Zeitschrift PY - 1990 SP - 471 EP - 486 VL - 205 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZ_1990__205_3_174188/ ID - MZ_1990__205_3_174188 ER -
Wolfgang Woess; Paolo M. Soardi. Amenability, unimodularity, and the spectral radius of random walks on finite graphs.. Mathematische Zeitschrift, Tome 205 (1990) no. 3, pp. 471-486. http://geodesic.mathdoc.fr/item/MZ_1990__205_3_174188/