Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
Mathematische Zeitschrift, Tome 190 (1985), pp. 39-44
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
Kähler metric, Hermitian holomorphic sectional curvature, Hermitian metric, complex surface
@article{MZ_1985__190_173607,
author = {Paul Gauduchon and Andrew Balas},
title = {Any {Hermitian} {Metric} of {Constant} {Non-Positive} {(Hermitian)} {Holomorphic} {Sectional} {Curvature} on a {Compact} {Complex} {Surface} is {K\"ahler.}},
journal = {Mathematische Zeitschrift},
pages = {39--44},
year = {1985},
volume = {190},
zbl = {0549.53063},
url = {http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/}
}
TY - JOUR AU - Paul Gauduchon AU - Andrew Balas TI - Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler. JO - Mathematische Zeitschrift PY - 1985 SP - 39 EP - 44 VL - 190 UR - http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/ ID - MZ_1985__190_173607 ER -
%0 Journal Article %A Paul Gauduchon %A Andrew Balas %T Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler. %J Mathematische Zeitschrift %D 1985 %P 39-44 %V 190 %U http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/ %F MZ_1985__190_173607
Paul Gauduchon; Andrew Balas. Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.. Mathematische Zeitschrift, Tome 190 (1985), pp. 39-44. http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/