Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
Mathematische Zeitschrift, Tome 190 (1985), pp. 39-44.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Kähler metric, Hermitian holomorphic sectional curvature, Hermitian metric, complex surface
@article{MZ_1985__190_173607,
     author = {Paul Gauduchon and Andrew Balas},
     title = {Any {Hermitian} {Metric} of {Constant} {Non-Positive} {(Hermitian)} {Holomorphic} {Sectional} {Curvature} on a {Compact} {Complex} {Surface} is {K\"ahler.}},
     journal = {Mathematische Zeitschrift},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {190},
     year = {1985},
     zbl = {0549.53063},
     url = {http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/}
}
TY  - JOUR
AU  - Paul Gauduchon
AU  - Andrew Balas
TI  - Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
JO  - Mathematische Zeitschrift
PY  - 1985
SP  - 39
EP  - 44
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/
ID  - MZ_1985__190_173607
ER  - 
%0 Journal Article
%A Paul Gauduchon
%A Andrew Balas
%T Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.
%J Mathematische Zeitschrift
%D 1985
%P 39-44
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/
%F MZ_1985__190_173607
Paul Gauduchon; Andrew Balas. Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.. Mathematische Zeitschrift, Tome 190 (1985), pp. 39-44. http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/