Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MZ_1985__190_173607, author = {Paul Gauduchon and Andrew Balas}, title = {Any {Hermitian} {Metric} of {Constant} {Non-Positive} {(Hermitian)} {Holomorphic} {Sectional} {Curvature} on a {Compact} {Complex} {Surface} is {K\"ahler.}}, journal = {Mathematische Zeitschrift}, pages = {39--44}, publisher = {mathdoc}, volume = {190}, year = {1985}, zbl = {0549.53063}, url = {http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/} }
TY - JOUR AU - Paul Gauduchon AU - Andrew Balas TI - Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler. JO - Mathematische Zeitschrift PY - 1985 SP - 39 EP - 44 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/ ID - MZ_1985__190_173607 ER -
%0 Journal Article %A Paul Gauduchon %A Andrew Balas %T Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler. %J Mathematische Zeitschrift %D 1985 %P 39-44 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/ %F MZ_1985__190_173607
Paul Gauduchon; Andrew Balas. Any Hermitian Metric of Constant Non-Positive (Hermitian) Holomorphic Sectional Curvature on a Compact Complex Surface is Kähler.. Mathematische Zeitschrift, Tome 190 (1985), pp. 39-44. http://geodesic.mathdoc.fr/item/MZ_1985__190_173607/