Every Cotorsion-free Algebra is an Endomorphism Algebra.
Mathematische Zeitschrift, Tome 181 (1982), pp. 451-470.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Dedekind domain, indecomposable modules, superdecomposable modules, test problems, cotorsion-free algebra, endomorphism algebra, direct summand, countable torsion-free reduced, endomorphism ring of torsion-free abelian group, automorphism group of torsion-free abelian group, commutative artinian ring, cancellation property, bibliography
@article{MZ_1982__181_173246,
     author = {Manfred Dugas and R\"udiger G\"obel},
     title = {Every {Cotorsion-free} {Algebra} is an {Endomorphism} {Algebra.}},
     journal = {Mathematische Zeitschrift},
     pages = {451--470},
     publisher = {mathdoc},
     volume = {181},
     year = {1982},
     zbl = {0501.16031},
     url = {http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/}
}
TY  - JOUR
AU  - Manfred Dugas
AU  - Rüdiger Göbel
TI  - Every Cotorsion-free Algebra is an Endomorphism Algebra.
JO  - Mathematische Zeitschrift
PY  - 1982
SP  - 451
EP  - 470
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/
ID  - MZ_1982__181_173246
ER  - 
%0 Journal Article
%A Manfred Dugas
%A Rüdiger Göbel
%T Every Cotorsion-free Algebra is an Endomorphism Algebra.
%J Mathematische Zeitschrift
%D 1982
%P 451-470
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/
%F MZ_1982__181_173246
Manfred Dugas; Rüdiger Göbel. Every Cotorsion-free Algebra is an Endomorphism Algebra.. Mathematische Zeitschrift, Tome 181 (1982), pp. 451-470. http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/