Every Cotorsion-free Algebra is an Endomorphism Algebra.
Mathematische Zeitschrift, Tome 181 (1982), pp. 451-470
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
Dedekind domain, indecomposable modules, superdecomposable modules, test problems, cotorsion-free algebra, endomorphism algebra, direct summand, countable torsion-free reduced, endomorphism ring of torsion-free abelian group, automorphism group of torsion-free abelian group, commutative artinian ring, cancellation property, bibliography
@article{MZ_1982__181_173246,
author = {Manfred Dugas and R\"udiger G\"obel},
title = {Every {Cotorsion-free} {Algebra} is an {Endomorphism} {Algebra.}},
journal = {Mathematische Zeitschrift},
pages = {451--470},
year = {1982},
volume = {181},
zbl = {0501.16031},
url = {http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/}
}
Manfred Dugas; Rüdiger Göbel. Every Cotorsion-free Algebra is an Endomorphism Algebra.. Mathematische Zeitschrift, Tome 181 (1982), pp. 451-470. http://geodesic.mathdoc.fr/item/MZ_1982__181_173246/