The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness.
Mathematische Zeitschrift, Tome 179 (1982), pp. 151-168.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : stable minimal immersions, generalized tubular neighborhoods, bridge theorem, least area minimal embedding, outward pointing generalized mean curvature, generalized maximum principle, immersed surfaces
@article{MZ_1982__179_173134,
     author = {Shing-Tung Yau and William W. Meeks},
     title = {The {Existence} of {Embedded} {Minimal} {Surfaces} and the {Problem} of {Uniqueness.}},
     journal = {Mathematische Zeitschrift},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {179},
     year = {1982},
     zbl = {0479.49026},
     url = {http://geodesic.mathdoc.fr/item/MZ_1982__179_173134/}
}
TY  - JOUR
AU  - Shing-Tung Yau
AU  - William W. Meeks
TI  - The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness.
JO  - Mathematische Zeitschrift
PY  - 1982
SP  - 151
EP  - 168
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZ_1982__179_173134/
ID  - MZ_1982__179_173134
ER  - 
%0 Journal Article
%A Shing-Tung Yau
%A William W. Meeks
%T The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness.
%J Mathematische Zeitschrift
%D 1982
%P 151-168
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZ_1982__179_173134/
%F MZ_1982__179_173134
Shing-Tung Yau; William W. Meeks. The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness.. Mathematische Zeitschrift, Tome 179 (1982), pp. 151-168. http://geodesic.mathdoc.fr/item/MZ_1982__179_173134/