Uniformly convex cone spaces and properties of convex sets in them
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 614-625 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study various approximative properties of convex sets similar to those in Banach spaces in asymmetric uniformly convex cone spaces. It proves possible to transfer results known for Banach spaces to the case of cone spaces. Conditions for the nonemptiness of the intersection of convex bounded closed sets are obtained.
Keywords: asymmetric space, uniformly convex space, extended norm, convex set.
@article{MZM_2024_116_4_a9,
     author = {I. G. Tsar'kov},
     title = {Uniformly convex cone spaces and properties of convex sets in them},
     journal = {Matemati\v{c}eskie zametki},
     pages = {614--625},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Uniformly convex cone spaces and properties of convex sets in them
JO  - Matematičeskie zametki
PY  - 2024
SP  - 614
EP  - 625
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/
LA  - ru
ID  - MZM_2024_116_4_a9
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Uniformly convex cone spaces and properties of convex sets in them
%J Matematičeskie zametki
%D 2024
%P 614-625
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/
%G ru
%F MZM_2024_116_4_a9
I. G. Tsar'kov. Uniformly convex cone spaces and properties of convex sets in them. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 614-625. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/

[1] H. König, “Sublineare Funktionale”, Arch. Math. (Basel), 23 (1972), 500–508 | DOI | MR

[2] H. König, “Sublinear functionals and conical measures”, Arch. Math. (Basel), 77:1 (2001), 56–64 | DOI | MR

[3] V.D̃onjuan, N. Jonard-Perez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR

[4] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Front. Math., Birkhäuser, Basel, 2013 | DOI | MR | Zbl

[5] Ş. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR

[6] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl

[7] A. R. Alimov, “O strukture dopolneniya k chebyshevskim mnozhestvam”, Funkts. analiz i ego pril., 35:3 (2001), 19–27 | DOI | MR | Zbl

[8] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497 | DOI

[9] A. R. Alimov, “Strict protosuns in asymmetric spaces of continuous functions”, Results Math., 78:3 (2023), 95 | DOI | MR

[10] G. A. Akishev, “Neravenstvo raznykh metrik Nikolskogo dlya trigonometricheskikh polinomov v prostranstve so smeshannoi nesimmetrichnoi normoi”, Tr. IMM UrO RAN, 29:4 (2023), 11–26 | DOI

[11] L. M. García-Raffi, S. Romaguera, E. A. Sánchez-Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29:3 (2003), 717–728 | MR

[12] I. G. Tsar'kov, “Smoothness of solutions of the eikonal equation and regular points of their level surfaces”, Russ. J. Math. Phys., 30:2 (2023), 259–269 | DOI | MR

[13] I. G. Tsar'kov, “Reflexivity for spaces with extended norm”, Russ. J. Math. Phys., 30:3 (2023), 399–417 | DOI | MR

[14] I. G. Tsarkov, “Ravnomerno i lokalno vypuklye nesimmetrichnye prostranstva”, Matem. sb., 213:10 (2022), 139–166 | DOI | MR

[15] I. G. Tsar'kov, “Estimates of the Chebyshev radius in terms of the MAX-metric function and the MAX-projection operator”, Russ. J. Math. Phys., 30:1 (2023), 128–134 | DOI | MR

[16] A. R. Alimov, I. G. Tsarkov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259 | MR

[17] A. R. Alimov, I. G. Tsarkov, “Chebyshevskie mnozhestva, yavlyayuschiesya ob'edineniem ploskostei”, UMN, 79:2 (476) (2024), 183–184 | DOI

[18] I. G. Tsarkov, “Ravnomernaya vypuklost v nesimmetrichnykh prostranstvakh”, Matem. zametki, 110:5 (2021), 773–785 | DOI

[19] M. Bachir, G. Flores, “Index of symmetry and topological classification of asymmetric normed spaces”, Rocky Mountain J. Math., 50:6 (2020), 1951–1964 | DOI | MR

[20] A. R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR

[21] A. R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | MR

[22] A. R. Alimov, “Approximative solar properties of sets and local geometry of the unit sphere”, Lobachevskii J. Math., 44:12 (2023), 5148–5154 | MR

[23] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer Monogr. Math., Springer, Cham, 2021 | DOI | MR

[24] I. G. Tsarkov, “$\theta$-metricheskaya funktsiya v zadache minimizatsii funktsionalov”, Izv. RAN. Ser. matem., 88:2 (2024), 184–205 | DOI | MR

[25] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR

[26] G. E. Ivanov, M. S. Lopushanski, “Separation theorems for nonconvex sets in spaces with non-symmetric seminorm”, Math. Inequal. Appl., 20:3 (2017), 737–754 | MR

[27] G. E. Ivanov, M. C. Lopushanski, “Teorema ob otdelimosti dlya nevypuklykh mnozhestv i eë prilozheniya”, Fundament. i prikl. matem., 21:4 (2016), 23–66 | MR

[28] I. G. Tsar'kov, “Convexity of $\delta$-suns and $\gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 325–334 | MR

[29] I. G. Tsarkov, “Teoremy tipa Kuna–Takkera v konus-prostranstvakh i lineinykh normirovannykh prostranstvakh”, Matem. zametki, 114:6 (2023), 909–921 | DOI