@article{MZM_2024_116_4_a9,
author = {I. G. Tsar'kov},
title = {Uniformly convex cone spaces and properties of convex sets in them},
journal = {Matemati\v{c}eskie zametki},
pages = {614--625},
year = {2024},
volume = {116},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/}
}
I. G. Tsar'kov. Uniformly convex cone spaces and properties of convex sets in them. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 614-625. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a9/
[1] H. König, “Sublineare Funktionale”, Arch. Math. (Basel), 23 (1972), 500–508 | DOI | MR
[2] H. König, “Sublinear functionals and conical measures”, Arch. Math. (Basel), 77:1 (2001), 56–64 | DOI | MR
[3] V.D̃onjuan, N. Jonard-Perez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR
[4] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Front. Math., Birkhäuser, Basel, 2013 | DOI | MR | Zbl
[5] Ş. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR
[6] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl
[7] A. R. Alimov, “O strukture dopolneniya k chebyshevskim mnozhestvam”, Funkts. analiz i ego pril., 35:3 (2001), 19–27 | DOI | MR | Zbl
[8] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497 | DOI
[9] A. R. Alimov, “Strict protosuns in asymmetric spaces of continuous functions”, Results Math., 78:3 (2023), 95 | DOI | MR
[10] G. A. Akishev, “Neravenstvo raznykh metrik Nikolskogo dlya trigonometricheskikh polinomov v prostranstve so smeshannoi nesimmetrichnoi normoi”, Tr. IMM UrO RAN, 29:4 (2023), 11–26 | DOI
[11] L. M. García-Raffi, S. Romaguera, E. A. Sánchez-Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29:3 (2003), 717–728 | MR
[12] I. G. Tsar'kov, “Smoothness of solutions of the eikonal equation and regular points of their level surfaces”, Russ. J. Math. Phys., 30:2 (2023), 259–269 | DOI | MR
[13] I. G. Tsar'kov, “Reflexivity for spaces with extended norm”, Russ. J. Math. Phys., 30:3 (2023), 399–417 | DOI | MR
[14] I. G. Tsarkov, “Ravnomerno i lokalno vypuklye nesimmetrichnye prostranstva”, Matem. sb., 213:10 (2022), 139–166 | DOI | MR
[15] I. G. Tsar'kov, “Estimates of the Chebyshev radius in terms of the MAX-metric function and the MAX-projection operator”, Russ. J. Math. Phys., 30:1 (2023), 128–134 | DOI | MR
[16] A. R. Alimov, I. G. Tsarkov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259 | MR
[17] A. R. Alimov, I. G. Tsarkov, “Chebyshevskie mnozhestva, yavlyayuschiesya ob'edineniem ploskostei”, UMN, 79:2 (476) (2024), 183–184 | DOI
[18] I. G. Tsarkov, “Ravnomernaya vypuklost v nesimmetrichnykh prostranstvakh”, Matem. zametki, 110:5 (2021), 773–785 | DOI
[19] M. Bachir, G. Flores, “Index of symmetry and topological classification of asymmetric normed spaces”, Rocky Mountain J. Math., 50:6 (2020), 1951–1964 | DOI | MR
[20] A. R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR
[21] A. R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | MR
[22] A. R. Alimov, “Approximative solar properties of sets and local geometry of the unit sphere”, Lobachevskii J. Math., 44:12 (2023), 5148–5154 | MR
[23] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer Monogr. Math., Springer, Cham, 2021 | DOI | MR
[24] I. G. Tsarkov, “$\theta$-metricheskaya funktsiya v zadache minimizatsii funktsionalov”, Izv. RAN. Ser. matem., 88:2 (2024), 184–205 | DOI | MR
[25] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR
[26] G. E. Ivanov, M. S. Lopushanski, “Separation theorems for nonconvex sets in spaces with non-symmetric seminorm”, Math. Inequal. Appl., 20:3 (2017), 737–754 | MR
[27] G. E. Ivanov, M. C. Lopushanski, “Teorema ob otdelimosti dlya nevypuklykh mnozhestv i eë prilozheniya”, Fundament. i prikl. matem., 21:4 (2016), 23–66 | MR
[28] I. G. Tsar'kov, “Convexity of $\delta$-suns and $\gamma$-suns in asymmetric spaces”, Russ. J. Math. Phys., 31:2 (2024), 325–334 | MR
[29] I. G. Tsarkov, “Teoremy tipa Kuna–Takkera v konus-prostranstvakh i lineinykh normirovannykh prostranstvakh”, Matem. zametki, 114:6 (2023), 909–921 | DOI