Lattices of extensions of cyclically ordered sets and compactifications of generalized cyclically ordered spaces
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 599-613 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of an extension and a completion of a cyclically ordered set is introduced. It is shown that the family of all extensions of a cyclically ordered set has the structure of a complete lattice. Completions, which are cyclically ordered compactifications of generalized cyclically ordered spaces, are complete sublattices of this lattice.
Keywords: cyclic order, ordered space, extension, completion, lattice compactification.
@article{MZM_2024_116_4_a8,
     author = {G. B. Sorin},
     title = {Lattices of extensions of cyclically ordered sets and compactifications of generalized cyclically ordered spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {599--613},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a8/}
}
TY  - JOUR
AU  - G. B. Sorin
TI  - Lattices of extensions of cyclically ordered sets and compactifications of generalized cyclically ordered spaces
JO  - Matematičeskie zametki
PY  - 2024
SP  - 599
EP  - 613
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a8/
LA  - ru
ID  - MZM_2024_116_4_a8
ER  - 
%0 Journal Article
%A G. B. Sorin
%T Lattices of extensions of cyclically ordered sets and compactifications of generalized cyclically ordered spaces
%J Matematičeskie zametki
%D 2024
%P 599-613
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a8/
%G ru
%F MZM_2024_116_4_a8
G. B. Sorin. Lattices of extensions of cyclically ordered sets and compactifications of generalized cyclically ordered spaces. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 599-613. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a8/

[1] D. J. Lutzer, “On generalized ordered spaces”, Dissertationes Math. (Rozprawy Mat.), 89 (1971), 32 | MR

[2] T. Miwa, N. Kemoto, “Linearly ordered extensions of $\mathrm{GO}$ spaces”, Topology Appl., 54:1–3 (1993), 133–140 | DOI | MR

[3] R. Kaufman, “Ordered sets and compact spaces”, Colloq. Math., 17:1 (1967), 35–39 | DOI | MR

[4] V. Fedorchuk, “Nekotorye voprosy teorii uporyadochennykh prostranstv”, Sib. matem. zhurn., 10:1 (1969), 172–187 | MR | Zbl

[5] V. Novák, “Cuts in cyclically ordered sets”, Czechoslovak Math. J., 34:2 (1984), 322–333 | DOI | MR

[6] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR

[7] G. Birkgof, Teoriya reshetok, Mir, M., 1984 | MR

[8] M. Megrelishvili, “Orderable groups and semigroup compactifications”, Monatsh. Math., 200:1 (2023), 903–932 | DOI | MR

[9] E. Glasner, M. Megrelishvili, “Circularly ordered dynamical systems”, Monatsh. Math., 185:3 (2018), 415–441 | DOI | MR