On additive semigroups of idempotent semirings with identity
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 552-558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of an admissible semigroup is introduced. This is an (additive) semigroup on which a multiplication turning it into a multiplicatively idempotent semiring with identity can be defined. Admissible semilattices are studied. In particular, countable admissible and inadmissible “universal” semilattices are constructed, into which all finite semilattices are isomorphically embedded.
Keywords: semilattice, idempotent semiring, admissible semilattice.
@article{MZM_2024_116_4_a4,
     author = {A. A. Petrov and A. P. Shklyaev},
     title = {On additive semigroups of idempotent semirings with identity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--558},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a4/}
}
TY  - JOUR
AU  - A. A. Petrov
AU  - A. P. Shklyaev
TI  - On additive semigroups of idempotent semirings with identity
JO  - Matematičeskie zametki
PY  - 2024
SP  - 552
EP  - 558
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a4/
LA  - ru
ID  - MZM_2024_116_4_a4
ER  - 
%0 Journal Article
%A A. A. Petrov
%A A. P. Shklyaev
%T On additive semigroups of idempotent semirings with identity
%J Matematičeskie zametki
%D 2024
%P 552-558
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a4/
%G ru
%F MZM_2024_116_4_a4
A. A. Petrov; A. P. Shklyaev. On additive semigroups of idempotent semirings with identity. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 552-558. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a4/

[1] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982 | MR

[2] L. A. Skornyakov, Elementy teorii struktur, Nauka, M., 1982 | MR

[3] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, Mir, M., 1970 | MR

[4] E. M. Vechtomov, A. A. Petrov, Funktsionalnaya algebra i polukoltsa. Polukoltsa s idempotentnym umnozheniem, Lan, Sankt-Peterburg, 2022