Exceptional sets of entire functions of completely regular growth
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 510-530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study sequences of complex numbers of refined order. Multiple terms are allowed in such sequences. We consider complex sequences with finite maximal density for a given refined order. We construct special coverings of multiple sets $\{\lambda_k,n_k\}$ consisting of circles of special radii centered at points $\lambda_k$. In particular, we construct coverings whose connected components have a relatively small diameter, as well as coverings that are $C_0$-sets. These coverings act as exceptional sets for entire functions of finite refined order and completely regular growth. Outside these sets, we obtain a representation of the logarithm of the modulus of an entire function. Earlier, a similar representation was obtained by B. Ya. Levin outside the exceptional set with respect to which only its existence is asserted. In contrast to this, in this paper, we present a simple constructive construction of the exceptional set.
Keywords: refined order, entire function, regular growth, exceptional set.
@article{MZM_2024_116_4_a2,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Exceptional sets of entire functions of completely regular growth},
     journal = {Matemati\v{c}eskie zametki},
     pages = {510--530},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a2/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Exceptional sets of entire functions of completely regular growth
JO  - Matematičeskie zametki
PY  - 2024
SP  - 510
EP  - 530
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a2/
LA  - ru
ID  - MZM_2024_116_4_a2
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Exceptional sets of entire functions of completely regular growth
%J Matematičeskie zametki
%D 2024
%P 510-530
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a2/
%G ru
%F MZM_2024_116_4_a2
A. S. Krivosheev; O. A. Krivosheeva. Exceptional sets of entire functions of completely regular growth. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 510-530. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a2/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR

[2] O. A. Krivosheeva, A. S. Krivosheev, A. I. Rafikov, “Otsenki snizu tselykh funktsii”, Ufimsk. matem. zhurn., 11:3 (2019), 46–62

[3] A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[4] A. S. Krivosheev, A. I. Rafikov, “Predstavlenie analiticheskikh funktsii v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Algebra i analiz, 34:5 (2022), 75–138

[5] A. S. Krivosheev, O. A. Krivosheeva, “Isklyuchitelnye mnozhestva”, SMFN, 69:2 (2023), 289–305 | DOI

[6] A. S. Krivosheev, O. A. Krivosheeva, A. I. Rafikov, “Invariantnye podprostranstva v poluploskosti”, Ufimsk. matem. zhurn., 13:3 (2021), 58–81

[7] A. I. Abdulnagimov, A. S. Krivosheev, “Pravilno raspredelennye podmnozhestva v kompleksnoi ploskosti”, Algebra i analiz, 28:4 (2016), 1–46 | MR

[8] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR