On the existence of a wave front in the Cauchy problem for the Gurtin–Pipkin equation
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 636-640
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Gurtin–Pipkin equation, wave front.
@article{MZM_2024_116_4_a12,
author = {I. V. Romanov and A. S. Shamaev},
title = {On the existence of a wave front in the {Cauchy} problem for the {Gurtin{\textendash}Pipkin} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {636--640},
year = {2024},
volume = {116},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a12/}
}
TY - JOUR AU - I. V. Romanov AU - A. S. Shamaev TI - On the existence of a wave front in the Cauchy problem for the Gurtin–Pipkin equation JO - Matematičeskie zametki PY - 2024 SP - 636 EP - 640 VL - 116 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a12/ LA - ru ID - MZM_2024_116_4_a12 ER -
I. V. Romanov; A. S. Shamaev. On the existence of a wave front in the Cauchy problem for the Gurtin–Pipkin equation. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 636-640. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a12/
[1] V. I. Smirnov, Kurs vysshei matematiki, 2, BKhV-Peterburg, 2008 | MR
[2] M. E. Gurtin, A. C. Pipkin, Arch. Rational Mech. Anal., 31:2 (1968), 113–126 | DOI | MR
[3] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[4] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964 | MR
[5] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, Uravneniya v chastnykh proizvodnykh, SMFN, 39, RUDN, M., 2011, 36–65 | MR