Some properties of trajectories of a nonhomogeneous velocity field of a viscoelastic fluid in a multiconnected domain
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 626-631 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Keywords: viscoelastic medium, multiconnected domain, nonhomogeneous boundary condition, trajectories of velocity field, regular Lagrangian flow.
@article{MZM_2024_116_4_a10,
     author = {A. V. Zvyagin and V. G. Zvyagin and V. P. Orlov},
     title = {Some properties of trajectories of a~nonhomogeneous velocity field of a~viscoelastic fluid in a~multiconnected domain},
     journal = {Matemati\v{c}eskie zametki},
     pages = {626--631},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a10/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - Some properties of trajectories of a nonhomogeneous velocity field of a viscoelastic fluid in a multiconnected domain
JO  - Matematičeskie zametki
PY  - 2024
SP  - 626
EP  - 631
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a10/
LA  - ru
ID  - MZM_2024_116_4_a10
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A V. G. Zvyagin
%A V. P. Orlov
%T Some properties of trajectories of a nonhomogeneous velocity field of a viscoelastic fluid in a multiconnected domain
%J Matematičeskie zametki
%D 2024
%P 626-631
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a10/
%G ru
%F MZM_2024_116_4_a10
A. V. Zvyagin; V. G. Zvyagin; V. P. Orlov. Some properties of trajectories of a nonhomogeneous velocity field of a viscoelastic fluid in a multiconnected domain. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 626-631. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a10/

[1] Dzh. G. Oldroid, Nenyutovskie techeniya zhidkostei i tverdykh tel. Reologiya: teoriya i prilozheniya, IL, M., 1962

[2] A. P. Oskolkov, Kraevye zadachi matematicheskoi fiziki. 13, Sbornik rabot, Tr. MIAN SSSR, 179, 1988, 126–164 | MR | Zbl

[3] Yu. N. Bibikov, Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningradskogo un-ta, L., 1981 | MR

[4] V. G. Zvyagin, D A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, De Gruyter Ser. Nonlinear Anal. Appl., 12, Walter de Gruyter, Berlin, 2008 | MR

[5] V. G. Zvyagin, V. P. Orlov, Differents. uravneniya, 53:2 (2017), 215–220 | DOI

[6] V. G. Zvyagin, V. P. Orlov, Nonlinear Anal., 172 (2018), 73–98 | DOI | MR

[7] V. G. Zvyagin, V. P. Orlov, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR

[8] V. G. Zvyagin, V. P. Orlov, Discrete Contin. Dyn. Syst. Ser. B, 23:9 (2018), 3855–3877 | DOI | MR

[9] A. V. Zvyagin, Izv. RAN. Ser. matem., 85:1 (2021), 66–97 | DOI | MR

[10] V. G. Zvyagin, V. P. Orlov, Funkts. analiz i ego pril., 57:1 (2023), 93–99 | DOI

[11] V. G. Zvyagin, V. P. Orlov, Dokl. RAN. Matem., inform., prots. upr., 510 (2023), 33–38 | DOI

[12] V. G. Zvyagin, V. P. Orlov, Zh. vychisl. matem. i matem. fiz., 63:11 (2023), 1859–1876 | DOI

[13] M. V. Korobkov, K. Piletskas, V. V. Pukhnachev, R. Russo, UMN, 69:6 (420) (2014), 115–176 | DOI | MR | Zbl

[14] S. G. Krein, Funktsionalnyi analiz, Nauka, M., 1972

[15] R. Temam, Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[16] R. J. DiPerna, P. L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR

[17] G. Crippa, C. de Lellis, J. Reine Angew. Math., 616 (2008), 15–46 | MR