Mots-clés : efficient algorithm.
@article{MZM_2024_116_4_a1,
author = {K. Kaymakov and D. S. Malyshev},
title = {Approximate search for the $k$th order distance in a~system of unit square points},
journal = {Matemati\v{c}eskie zametki},
pages = {504--509},
year = {2024},
volume = {116},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a1/}
}
K. Kaymakov; D. S. Malyshev. Approximate search for the $k$th order distance in a system of unit square points. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 504-509. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a1/
[1] K. L. Clarkson, “Fast algorithms for the all nearest neighbors problem”, Proceedings of 24th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, 1983, 226–232
[2] S. Fortune, J. E. Hopcroft, “A note on Rabin's nearest-neighbor algorithm”, Information Processing Letters, 8:1 (1979), 20–23 | DOI | MR
[3] S. Khuller, Y. Matias, “A simple randomized sieve algorithm for the closest-pair problem”, Information and Computation, 118:1 (1995), 34–37 | DOI | MR
[4] S. N. Bespamyatnikh, “An optimal algorithm for closest-pair maintenance”, Discrete and Computational Geometry, 19 (1998), 175–195 | DOI | MR
[5] H.-P. Lenhof, M. Smid, “Enumerating the $k$ closest pairs optimally”, Proceedings of 33rd Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, 1992, 380–386
[6] H.-P. Lenhof, M. Smid, “Sequential and parallel algorithms for the $k$ closest pairs problem”, International Journal of Computational Geometry and Applications, 5:3 (1995), 273–285 | DOI | MR
[7] H. Kurasawa, A. Takasu, J. Adachi, “Finding the $k$-closest pairs in metric spaces”, Proceedings of the 1st Workshop on New Trends in Similarity Search, Association for Computing Machinery, New York, 2011, 8–13
[8] A. Corall, A. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, “Closest pair queries in spatial databases”, ACM SIGMOD Record, 29:2 (2000), 189–200 | DOI
[9] M. Aumüller, M. Ceccarello, “Solving $k$-closest pairs in high-dimensional data”, Similarity Search and Applications, Springer, Berlin, 2023, 200–214
[10] J. L. Bentley, T. A. Ottman, “Algorithms for reporting and counting geometric intersections”, IEEE Transactions on Computers, C-28:9 (1979), 643–647 | DOI
[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts London, England, 2022 | MR
[12] P. M. Fenwick, “A new data structure for cumulative frequency tables”, Software: Practice and Experience, 24:3 (1994), 327–336 | DOI