@article{MZM_2024_116_4_a0,
author = {A. M. Vodolazov and M. A. Skopina},
title = {Generalized {Vilenkin} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {489--503},
year = {2024},
volume = {116},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/}
}
A. M. Vodolazov; M. A. Skopina. Generalized Vilenkin groups. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 489-503. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/
[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR
[2] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | MR
[3] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR
[4] M. A. Skopina, Yu. A. Farkov, “Funktsii tipa Uolsha na $M$-polozhitelnykh mnozhestvakh v $\mathbb R^d$”, Matem. zametki, 111:4 (2022), 631–635 | DOI | MR | Zbl
[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[6] Yu. A. Bakhturin, Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | MR
[7] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR
[8] B. Behera Q. Jahan, Wavelet Analysis on Local Fields of Positive Characteristic, Indian Stat. Inst. Ser., Springer, Singapore, 2021 | MR
[9] Yu. Farkov, M. Skopina, “Harmonic analysis on the space of $M$-positive vectors”, J. Math. Sci. (N.Y.), 280:1 (2024), 5–22 | DOI | MR
[10] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Ind. Appl. Math., Springer, Singapore, 2016 | MR
[11] C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:1 (1991), 549–562 | MR
[12] J. C. Lagarias, Y. Wang, “Self-affine tiles in $\mathbb{R}^n$”, Adv. Math., 121:1 (1996), 21–49 | DOI | MR
[13] B. Z. Vulikh, Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1973
[14] Yu. A. Farkov, M. A. Skopina, “Step wavelets on Vilenkin groups”, J. Math. Sci. (N.Y.), 266:5 (2022), 696–708 | DOI | MR
[15] I. Ya. Novikov, M. A. Skopina, “Pochemu v raznykh strukturakh bazisy Khaara odinakovye?”, Matem. zametki, 91:6 (2012), 950–953 | DOI | MR
[16] Yu. A. Farkov, “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincare J. Anal. Appl., 2015:2 (2015), 13–36, Spec. Iss | DOI | MR
[17] Yu. A. Farkov, “Stupenchatye masshtabiruyuschie funktsii i sistema Krestensona”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 134–149 | DOI
[18] M. Skopina, “Tight wavelet frames on the space of $M$-positive vectors”, Anal. Appl. (Singap.), 22:5 (2024), 913–936 | DOI | MR
[19] Yu. A. Farkov, P. Manchanda, A. H. Siddiqi, Construction of Wavelets through Walsh Functions, Ind. Appl. Math., Springer, Singapore, 2019 | MR
[20] S. F. Lukomskii, G. S. Berdnikov, “$N$-valid trees in wavelet theory on Vilenkin groups”, Int. J. Wavelets Multiresolut. Inf. Process., 13:5 (2015), 23 | DOI | MR
[21] S. F. Lukomskii, “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR