Generalized Vilenkin groups
Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 489-503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized Vilenkin groups are introduced and studied. To such a group, there corresponds an arbitrary finite Abelian group instead of a cyclic group in the case of classical Vilenkin groups. The foundations of harmonic analysis and methods for constructing wavelets on generalized Vilenkin groups are developed. It is proved that the additive group of any local field of positive characteristic is a generalized Vilenkin group.
Keywords: Vilenkin group, Walsh function, character, $M$-positive set, wavelet system.
@article{MZM_2024_116_4_a0,
     author = {A. M. Vodolazov and M. A. Skopina},
     title = {Generalized {Vilenkin} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--503},
     year = {2024},
     volume = {116},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - M. A. Skopina
TI  - Generalized Vilenkin groups
JO  - Matematičeskie zametki
PY  - 2024
SP  - 489
EP  - 503
VL  - 116
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/
LA  - ru
ID  - MZM_2024_116_4_a0
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A M. A. Skopina
%T Generalized Vilenkin groups
%J Matematičeskie zametki
%D 2024
%P 489-503
%V 116
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/
%G ru
%F MZM_2024_116_4_a0
A. M. Vodolazov; M. A. Skopina. Generalized Vilenkin groups. Matematičeskie zametki, Tome 116 (2024) no. 4, pp. 489-503. http://geodesic.mathdoc.fr/item/MZM_2024_116_4_a0/

[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR

[2] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | MR

[3] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR

[4] M. A. Skopina, Yu. A. Farkov, “Funktsii tipa Uolsha na $M$-polozhitelnykh mnozhestvakh v $\mathbb R^d$”, Matem. zametki, 111:4 (2022), 631–635 | DOI | MR | Zbl

[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[6] Yu. A. Bakhturin, Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | MR

[7] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR

[8] B. Behera Q. Jahan, Wavelet Analysis on Local Fields of Positive Characteristic, Indian Stat. Inst. Ser., Springer, Singapore, 2021 | MR

[9] Yu. Farkov, M. Skopina, “Harmonic analysis on the space of $M$-positive vectors”, J. Math. Sci. (N.Y.), 280:1 (2024), 5–22 | DOI | MR

[10] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Ind. Appl. Math., Springer, Singapore, 2016 | MR

[11] C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:1 (1991), 549–562 | MR

[12] J. C. Lagarias, Y. Wang, “Self-affine tiles in $\mathbb{R}^n$”, Adv. Math., 121:1 (1996), 21–49 | DOI | MR

[13] B. Z. Vulikh, Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1973

[14] Yu. A. Farkov, M. A. Skopina, “Step wavelets on Vilenkin groups”, J. Math. Sci. (N.Y.), 266:5 (2022), 696–708 | DOI | MR

[15] I. Ya. Novikov, M. A. Skopina, “Pochemu v raznykh strukturakh bazisy Khaara odinakovye?”, Matem. zametki, 91:6 (2012), 950–953 | DOI | MR

[16] Yu. A. Farkov, “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincare J. Anal. Appl., 2015:2 (2015), 13–36, Spec. Iss | DOI | MR

[17] Yu. A. Farkov, “Stupenchatye masshtabiruyuschie funktsii i sistema Krestensona”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 134–149 | DOI

[18] M. Skopina, “Tight wavelet frames on the space of $M$-positive vectors”, Anal. Appl. (Singap.), 22:5 (2024), 913–936 | DOI | MR

[19] Yu. A. Farkov, P. Manchanda, A. H. Siddiqi, Construction of Wavelets through Walsh Functions, Ind. Appl. Math., Springer, Singapore, 2019 | MR

[20] S. F. Lukomskii, G. S. Berdnikov, “$N$-valid trees in wavelet theory on Vilenkin groups”, Int. J. Wavelets Multiresolut. Inf. Process., 13:5 (2015), 23 | DOI | MR

[21] S. F. Lukomskii, “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR