On estimating an inhomogeneous Kloosterman sum by the Karatsuba method
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 445-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, a new estimate for a short “inhomogeneous” Kloosterman sum modulo $q$ whose number of terms does not exceed $\sqrt{q}$ is obtained. This estimate refines the result of M. A. Korolev (2016).
Keywords: short Kloosterman sums, Karatsuba method.
@article{MZM_2024_116_3_a9,
     author = {N. K. Semenova},
     title = {On estimating an inhomogeneous {Kloosterman} sum by the {Karatsuba} method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {445--460},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a9/}
}
TY  - JOUR
AU  - N. K. Semenova
TI  - On estimating an inhomogeneous Kloosterman sum by the Karatsuba method
JO  - Matematičeskie zametki
PY  - 2024
SP  - 445
EP  - 460
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a9/
LA  - ru
ID  - MZM_2024_116_3_a9
ER  - 
%0 Journal Article
%A N. K. Semenova
%T On estimating an inhomogeneous Kloosterman sum by the Karatsuba method
%J Matematičeskie zametki
%D 2024
%P 445-460
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a9/
%G ru
%F MZM_2024_116_3_a9
N. K. Semenova. On estimating an inhomogeneous Kloosterman sum by the Karatsuba method. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 445-460. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a9/

[1] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207 | DOI | MR

[2] A. A. Karatsuba, “Drobnye doli spetsialnogo vida funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 61–80 | MR | Zbl

[3] A. A. Karatsuba, “Summy drobnykh dolei spetsialnogo vida funktsii”, Dokl. RAN, 349:3 (1996), 541 | MR

[4] M. A. Korolev, “Nepolnye summy Kloostermana i ikh prilozheniya”, Izv. RAN. Ser. matem., 64:6 (2000), 41–64 | DOI | MR | Zbl

[5] M. A. Korolev, “Korotkie summy Kloostermana s vesami”, Matem. zametki, 88:3 (2010), 415–427 | DOI | MR | Zbl

[6] M. A. Korolev, “O metode Karatsuby otsenok summ Kloostermana”, Matem. sb., 207:8 (2016), 117–134 | DOI | MR | Zbl

[7] M. A. Korolev, “O korotkikh summakh Kloostermana po prostomu modulyu”, Matem. zametki, 100:6 (2016), 838–846 | DOI | MR

[8] M. A. Korolev, “Novaya otsenka summy Kloostermana s prostymi chislami po sostavnomu modulyu”, Matem. sb., 209:5 (2018), 54–61 | DOI | MR

[9] M. A. Korolev, “Resheto I. M. Vinogradova i otsenka nepolnoi summy Kloostermana”, Matem. sb., 213:2 (2022), 96–114 | DOI | MR

[10] Zh. Burgein, M. Z. Garaev, “Summa mnozhestv, obrazovannykh obratnymi elementami v polyakh prostogo poryadka, i polilineinye summy Kloostermana”, Izv. RAN. Ser. matem., 78:4 (2014), 19–72 | DOI | MR | Zbl

[11] H. Halberstam, H.-E. Richert, Sieve Methods, London Math. Soc. Monogr., 4, Academic Press, London–New York, 1974 | MR

[12] N. K. Semenova, “Novye otsenki korotkikh summ Kloostermana s vesami”, Izv. RAN. Ser. matem., 86:3 (2022), 161–186 | DOI | MR